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Abstract
Heterogeneous domain adaptation (HDA) aims to
exploit knowledge from a heterogeneous source do-
main to improve the learning performance in a tar-
get domain. Since the feature spaces of the source
and target domains are different, the transferring
of knowledge is extremely difficult. In this paper,
we propose a novel semi-supervised algorithm for
HDA by exploiting the theory of optimal transport
(OT), a powerful tool originally designed for align-
ing two different distributions. To match the sam-
ples between heterogeneous domains, we propose
to preserve the semantic consistency between het-
erogeneous domains by incorporating label infor-
mation into the entropic Gromov-Wasserstein dis-
crepancy, which is a metric in OT for different
metric spaces, resulting in a new semi-supervised
scheme. Via the new scheme, the target and trans-
ported source samples with the same label are en-
forced to follow similar distributions. Lastly, based
on the Kullback-Leibler metric, we develop an ef-
ficient algorithm to optimize the resultant problem.
Comprehensive experiments on both synthetic and
real-world datasets demonstrate the effectiveness of
our proposed method.

1 Introduction
Domain adaptation (DA) aims to leverage data from an aux-
iliary source domain to assist the learning task in a do-
main of interest, a.k.a., target domain. Most existing works
of DA consider the homogeneous DA problem, in which
source and target samples share the same feature space [Long
et al., 2014]. Compared with the homogeneous setting,
heterogeneous domain adaptation (HDA) addresses a more
challenging situation where the source and target samples
are represented in different feature spaces [Li et al., 2014;
Tsai et al., 2016]. For instance, source and target samples
could be images embedded in different kinds of features [Yan
et al., 2017b], or documents in different languages [Zhou et
al., 2016].
∗The co-first author.
†The corresponding author.

Most of the previous studies of HDA are devoted to learn-
ing a feature mapping function to transform the source and
target samples into a common feature space. Nevertheless,
these mapping functions are usually restricted in a predefined
assumption space, e.g., linear projections used in [Tsai et al.,
2016; Yan et al., 2017b], hence their capacities of transfor-
mation between two heterogeneous feature spaces would be
rather limited.

In this paper, we propose a novel HDA algorithm by ex-
ploiting the theory of optimal transport (OT). Instead of learn-
ing a feature transformation, OT aims to match two distri-
butions by transporting samples from one distribution to an-
other. Very recently, a few works have been reported to apply
OT for homogeneous domain adaptation [Perrot et al., 2016;
Courty et al., 2017]. However, these methods rely on a trans-
port distance metric for two sets of homogeneous samples,
which is not applicable to HDA problems.

To address this issue, we treat the two heterogeneous fea-
ture spaces as two individual metric spaces and employ the
entropic Gromov-Wasserstein (EGW) discrepancy [Peyré et
al., 2016] to learn a transport plan, which transports sam-
ples from one metric space into another metric space. The
EGW discrepancy is a powerful metric in OT for learning an
optimal transport matrix, such that the distance between two
metric spaces is minimized. EGW has been shown to be ef-
fective for many tasks such as 3D object matching [Peyré et
al., 2016]. Since no common distance metric between two
metric spaces is required, EGW can be naturally applied to
the HDA problem.

A potential issue when applying EGW for HDA is that
EGW is an unsupervised approach without considering label
information. Therefore, even though the marginal distribu-
tions of two domains are matched, the semantic concepts may
not be well aligned after the transportation. As illustrated in
the simulated results in Figure 1, the transported source sam-
ples obtained by EGW (Figure 1(d)) follow a similar distribu-
tion with the target samples (Figure 1(b)). However, the tar-
get and transported source samples with different labels are
mixed up, which leads to a significant performance drop in
classification.

To alleviate the above issue, we propose to incorporate la-
bel information into EGW to learn an optimal transport plan
satisfying label consistency for classification. We leverage
both labeled and unlabeled target samples to constrain the



transport matrix, such that the transported source samples and
target samples with the same label follow similar distribu-
tions, as illustrated in Figure 1(f). The principal contributions
of our work are summarized as follows.

• We propose a semi-supervised entropic Gromov-
Wasserstein discrepancy approach named SGW to in-
corporate the supervision information when learning the
optimal transport. A conditional distribution matching
regularization and a group entropic regularization are in-
troduced to effectively exploit the label information to
constrain the transportation.

• We apply a projected gradient algorithm with the
Kullback-Leibler divergence to efficiently solve the de-
rived optimization problem.

• We conduct comprehensive experiments on both syn-
thetic and real-world datasets to demonstrate the effec-
tiveness of our proposed method.

2 Related Studies
By leveraging knowledge extracted from data in an auxil-
iary source domain, domain adaptation addresses the prob-
lem where the labeled samples in a target domain are insuf-
ficient to train an effective classifier [Pan and Yang, 2010;
Patel et al., 2015; Shao et al., 2015]. Homogeneous domain
adaptation considers the situation where the source and tar-
get domains share the same feature space but have differ-
ent data distributions [Pan et al., 2011; Long et al., 2015;
Yan et al., 2017a; Liu et al., 2017]. Recent years, hetero-
geneous domain adaptation (HDA) has attracted a lot of at-
tention [Zhou et al., 2014; 2016; Moon and Carbonell, 2017;
Luo et al., 2017]. Compared with the homogeneous setting,
HDA is more challenging due to the heterogeneity between
the source and target feature spaces, making it difficult to
directly leverage source samples to assist the target learning
task.

In general, existing HDA algorithms can be categorized
into two groups. The first group uses extra auxiliary data
to connect the source and target feature spaces. In [Wu et
al., 2014], co-occurrence data are employed to build rela-
tionships between the source and target samples, and graph-
based algorithms are conducted for classification. TTL [Tan
et al., 2015] applies a collective matrix factorization method
to learn semantic new representations for target data. Yan
et al. exploited co-occurrence data to address HDA in online
learning settings [Yan et al., 2017c]. These methods require
extra co-occurrence data, which are not always available in
real-world applications.

Rather than relying on co-occurrence data to connect fea-
ture spaces, the second group of HDA algorithms aims to
find effective feature transformations to map source and tar-
get samples into the same feature space. HFA [Duan et al.,
2012] and SHFA [Li et al., 2014] augment source and tar-
get samples based on two projection matrices, and simultane-
ously train an SVM classifier on the augmented data. CDLS
[Tsai et al., 2016] finds representative landmarks to learn a
domain-invariant feature subspace, and then a classifier for
target data is trained in the learned subspace. DCA [Yan et

al., 2017b] jointly seeks for a discriminative correlation sub-
space defined by Canonical Correlation Analysis and learns a
classifier in the found subspace.

Different from the above works, we address HDA by ex-
ploiting optimal transport [Peyré and Cuturi, 2017], which
does not learn explicit feature transformations. Although
there are a few works addressing homogeneous domain adap-
tation problems using optimal transport [Courty et al., 2017;
Perrot et al., 2016; Redko et al., 2017], optimal transport for
HDA is challenging and barely studied in the literature. It is
not applicable to directly use the existing transport cost for
homogeneous samples to the HDA problem. In this paper,
we propose to learn optimal transport for HDA by leveraging
the entropic Gromov-Wasserstein discrepancy [Peyré et al.,
2016] to minimize the difference between the metric matri-
ces of two heterogeneous domains.

3 Learning Model
3.1 Problem Statement and Notations
In heterogeneous domain adaptation (HDA), we are given
a source domain and a target domain, which have different
feature representations. The source domain contains a large
number of labeled samples, and the target domain only con-
tains a limited number of labeled samples (and a number of
unlabeled samples in certain scenarios). The task is to take
the advantage of the source labeled samples to improve the
classification performance in the target domain.

For convenience of presentation, we denote the source
samples as Xs = [xs1, . . . ,x

s
ns

]> ∈ Rns×ds with ns be-
ing the number of source samples and ds being the source
feature dimension, and xsi ∈ Rds is the i-th source sample
with label ysi ∈ Ys. The target samples are represented as
Xt = [xt1, . . . ,x

t
nt

]> ∈ Rnt×dt , where nt is the number of
target samples, xti ∈ Rdt is the i-th target sample with dt be-
ing the feature dimension, Among the target samples, Xl =
[xl1, . . . ,x

l
nl

]> ∈ Rnl×dt are labeled target samples with la-
bels {yli}

nl
i=1 ∈ Yt , and Xu = [xu1 , . . . ,x

u
nu

]> ∈ Rnu×dt

are unlabeled target samples, where nl and nu are the num-
ber of labeled and unlabeled target samples, respectively, and
nt = nl + nu. In our HDA problems, We have nl � nu,
ds 6= dt and Ys = Yt = {1, . . . ,K}.

For the matrix A, log(A) and exp(A) are element-wise
operations. The entropy of A is defined by

H(A)
def.
= −

ns∑
i=1

nt∑
j=1

Ai,j(logAi,j − 1), (1)

where Ai,j is the (i, j)-th element of A. For the matrices A
and B, the inner product is defined as

〈A,B〉 =
∑
i

∑
j

Ai,jBi,j . (2)

3.2 Entropic Gromov-Wasserstein Discrepancy
The major challenge in HDA is that the feature represen-
tations in two domains are different. Thus, it is important
to build the correspondence between heterogeneous feature
spaces for reducing the domain discrepancy. To achieve this,



we employ the entropic Gromov-Wasserstein (EGW) discrep-
ancy [Peyré et al., 2016], which has shown superior perfor-
mance in 3D object matching.

The EGW discrepancy is based on the optimal transport
theory, which seeks for an optimal solution to transport a set
of samples (or a distribution) to another set of samples (or an-
other distribution). The advantage of the EGW discrepancy is
that it does not rely on the distance between two sets of sam-
ples, which is usually required in classical optimal transport
problems. Instead, EGW is defined on two individual metric-
measure spaces, thus is appropriate for the HDA problem,
where the feature spaces of two domains are heterogeneous.

In particular, given a set of samples in one domain, the
corresponding empirical distribution can be represented by a
simplex of histograms p ∈ ∆n

def.
= {p ∈ Rn+|p>1n = 1},

where n is the number of samples, and the vector 1n =
[1, . . . , 1]> ∈ Rn. We use ps = [ 1

ns
, . . . , 1

ns
]> and

pt = [ 1
nt
, . . . , 1

nt
]> to represent the empirical distributions of

source and target samples, respectively. The joint distribution
of ps and pt is defined by T ∈ T def.

= {T ∈ Rns×nt |T1nt =
ps,T

>1ns = pt}.
Let Ms (resp. Mt) be a matrix representing a certain met-

ric on source (resp. target) samples, the entropic Gromov-
Wasserstein problem seeks for an optimal transport matrix T,
which gives the best match of two metric matrices. The EGW
problem reads

EGW(Ms,Mt,ps,pt)
def.
= min

T∈T
EMs,Mt

(T)− εH(T), (3)

where EMs,Mt(T)
def.
=

∑
i,i′,j,j′

`(Ms
i,j ,M

t
i′,j′)Ti,i′Tj,j′ ,

where Ms
i,j (resp., M t

i′,j′ ) is the (i, j)-th (resp., (i′, j′)-th) el-
ement of Ms (resp., Mt). The loss function `(Ms

i,j ,M
t
i′,j′)

measures the difference between Ms
i,j and M t

i′,j′ and is de-
fined by `(Ms

i,j ,M
t
i′,j′) = (Ms

i,j − M t
i′,j′)

2. The entropic
regularization term is used to induce a smoother solution.
Here we adopt the linear kernel matrix to construct the metric
matrices, i.e., Ms = XsX

>
s and Mt = XtX

>
t .

Let the transported source samples in the target domain be
X̃s, and the transported metric matrix be M̃s = X̃sX̃

>
s . Af-

ter obtaining the transport matrix T, X̃s can be obtained by
the GW barycenter [Peyré et al., 2016], which is given as fol-
lows

X̃s = nsTXt. (4)

Note that the size of the transport matrix T is ns × nt. As a
result, X̃s have the same numbers of features to that of tar-
get samples. Although the transportation is linear, the fea-
ture transformation induced by T is usually highly nonlinear
[Courty et al., 2017]. As a result, the EGW potentially pos-
sesses a higher capacity compared with conventional HDA
methods such as [Li et al., 2014; Yan et al., 2017b]. Af-
ter learning the transportation, a classifier can be trained us-
ing the labeled target samples and transported labeled source
samples, and then be applied to the unlabeled target samples
for classification.

3.3 Semi-supervised Entropic
Gromov-Wasserstein Discrepancy

A potential drawback when exploiting the entropic GW dis-
crepancy for the HDA problem is that it does not exploit the
label information in source and target domains. While it has
shown superior performance in 3D object matching, the train-
ing samples in real-world tasks are more noisy and diverse.
Thus, it is more desirable to further incorporate the label in-
formation to guide the learning of the transport matrix T.

To this end, we propose a semi-supervised entropic
Gromov-Wasserstein discrepancy (SGW) to seek for the op-
timal transport satisfying label consistency constraints in the
target domain. Motivated by this, we propose the following
learning problem to achieve the objective of label consistency
based on both labeled and unlabeled training data,

min
T∈T

L(T)
def.
= E(T)− εH(T) + λΩl(T) + γΩu(T), (5)

where E(T) is the abbreviation of EMs,Mt(T), Ωl(T) is de-
signed for labeled target samples, and Ωu(T) is for unlabeled
target samples. Next, we present the technical details regard-
ing these two terms.

3.4 Conditional Distribution Matching
The solution to the EGW problem is able to adapt the
marginal distributions of the target and transported source
samples. To further match the conditional distributions of
them, we enforce the centroids of target and transported
source samples with the same label to approach each other. To
this end, we minimize Ωl(T) to make the data with the same
label distribute close. Let X̃s = nsTXt = [x̃s1, . . . , x̃

s
ns

]>

be the transported source instrances, Ωl(T) is defined as fol-
lows:

Ωl(T) =

K∑
k=1

∣∣∣∣∣∣ 1

nsk

ns
k∑

i=1

x̃sik −
1

nlk

nl
k∑

i=1

xlik

∣∣∣∣∣∣2
2

=
∣∣∣∣∣∣nsPTXt −QXl

∣∣∣∣∣∣2
F
,

(6)

where nsk and nlk are the number of labeled source and target
samples with label k, x̃sik and xlik are samples with label k.
P ∈ RK×ns and Q ∈ RK×nl are label indicator matrices
and are constructed by the following equations,

Pk,i =

{
1/nsk if ysi = k,

0 otherwise;
(7)

Qk,i =

{
1/nlk if yli = k,

0 otherwise. (8)

Ωl(T) is identical to the conditional maximum mean dis-
crepancy when using the linear kernel, which measures the
conditional distribution discrepancy between two sets of sam-
ples [Long et al., 2014; Tsai et al., 2016].

3.5 Group Entropic Regularization
Recall that the transport matrix T models how likely each
source sample will be transported to each target sample,



which is also referred to as mass. Intuitively, given a tar-
get sample, most of the mass of it should be transported from
the source samples with the same label. Therefore, we divide
the source samples into different groups according to their la-
bels, and for the j-th column of the joint distribution T·,j ,
we design a group entropic regularization term to make the
probability distribute on one group. Specifically, let Ik be
the indices of the source samples with label k, the probability
TIk,j is the sum of the probabilities from the source samples
with label k to j-th target sample, i.e., TIk,j =

∑
i∈Ik Ti,j ,

the regularization term is defined as

Ωu(T) =

nt∑
j=1

H(TI1,j , . . . , TIK,j
). (9)

By minimizing the above group entropic regularization
term, the probability for one target sample is concentrated on
one group of source samples with the same label.

4 Optimization
Problem (5) is non-convex with the equality constraints, thus
is difficult to solve. To efficiently solve it, we apply a pro-
jected gradient descent algorithm according to the Kullback-
Leibler divergence [Benamou et al., 2015; Peyré et al., 2016].
Specifically, at the τ -th iteration, Tτ is firstly updated by the
exponentiated gradient method as follows:

T̂τ := Tτ � exp
(
− α∇L(Tτ )

)
, (10)

where α > 0 is a step size. And then T̂τ is projected into the
definition domain T with the Kullback-Leibler metric

Tτ+1 := ΠKL
T (T̂τ ) = arg min

T′∈T
KL(T′|T̂τ ). (11)

From [Benamou et al., 2015], the projection operation in
Eq. (11) can be rewritten as the following regularized optimal
transport problem

Tτ+1 := ΠKL
T (T̂τ ) = arg min

T′∈T
〈−ε log(T̂τ ),T′〉 − εH(T′),

(12)
which can be solved by the Sinkhorn’s fixed point algo-
rithm [Cuturi, 2013]. Specifically, the transport cost matrix
−ε log(T̂τ ) can be simplified as

−ε log(T̂τ ) = −ε log
(
Tτ � exp

(
− α∇L(Tτ )

))
= ∇E(Tτ ) +∇Ω(Tτ ),

(13)

where we set εα = 1. and Ω(Tτ ) = λΩl(Tτ ) + γΩu(Tτ ).
The solution to Problem (12) is

Tτ+1 = diag(u) Θ diag(v), (14)
where the matrix Θ is constructed by

Θ = exp
(
− 1

ε

(
∇E(Tτ ) +∇Ω(Tτ )

))
, (15)

and the vectors (u,v) are computed using Sinkhorn’s fixed
point iterations as follows.

u :=
ps
Θv

, v :=
pt

Θ>u
, (16)

where the division operations are performed element-wisely.
Algorithm 1 summarizes the main steps of the proposed

SGW algorithm.
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Figure 1: Simulated results on Wine dataset. (a) and (b) are the
source and target data points, respectively. (c) and (d) are the trans-
port matrix and transported source samples obtained by EGW. (e)
and (f) are the transported matrix and transported source samples
obtained by SGW.

5 Experiment
5.1 Synthetic Data
To better illustrate our proposed approach, we use synthetic
data to visualize the transport matrices and the transported
source data obtained by EGW and SGW. The synthetic data
are generated from Wine dataset 1, which includes 178 sam-
ples with three classes. To generate heterogeneous source and
target samples, we randomly pick up three and two features
as the source and target features, respectively.

Figures 1(a) and 1(b) show the source and target data,
where three colors correspond to three classes. The trans-
port matrices obtained by EGW and SGW are visualized in
Figures 1(c) and 1(e), respectively, in which a lighter point is
a larger value indicating the corresponding joint distribution
of the source and target samples is higher. For better observ-
ability, we order samples according to their labels to make
the samples with the same label gather together. Therefore,
in a label consistency preserving transport matrix, the larger
values must be in the colored square frames. The transported
source data in the target feature space are shown in Figures
1(d) and 1(f), respectively.

1https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/



Table 1: Results on the Office-Caltech dataset using 3 labeled target samples

S→ T SVM CCA+OT EGW SHFA CDLS DCA SGW
DeCAF6→ SURF

A→ C
28.42± 2.68

30.58± 3.31 28.13± 3.76 30.42± 3.04 31.94± 3.38 32.35± 3.48 34.54± 1.42
D→ C 31.37± 2.81 30.64± 1.45 31.58± 2.30 32.73± 2.24 32.75± 2.27 34.72± 0.93
W→ C 31.68± 2.47 27.88± 2.96 30.81± 2.47 33.12± 2.26 33.25± 3.05 35.03± 1.61
Average 28.42 31.21 28.88 30.94 32.60 32.78 34.76

SURF→ DeCAF6

C→ A 79.63± 3.42 84.06± 2.01 85.35± 2.85 85.33± 1.65 83.70± 2.37 89.16± 1.62 92.15± 0.39
C→ D 87.29± 5.98 90.75± 3.45 89.72± 4.36 92.52± 4.29 91.31± 3.15 92.90± 4.41 95.14± 0.59
C→W 86.86± 2.76 88.20± 3.60 88.04± 3.92 88.57± 1.22 88.29± 4.10 89.22± 3.03 95.39± 1.11
Average 84.59 87.67 87.70 88.81 87.76 90.43 94.23

Algorithm 1 Semi-supervised Entropic Gromov-Wasserstein.

Initialize: T1 = psp
>
t , τ = 1.

1: repeat
2: Compute X̃s by Eq. (4).
3: Construct Θ based on Tτ and Eq. (15).
4: Obtain (u,v) by the fixed point iterations in Eq. (16).
5: Update Tτ+1 by Eq. (14)
6: τ := τ + 1.
7: until Convergence.
8: Train a classifier on (X̃s,Ys) and (Xl,Yl).
9: Predict for the unlabeled target data Xu.

From the results of EGW in Figures 1(c) and 1(d), we ob-
serve that although the transported source samples follow a
similar distribution to the target samples, some source sam-
ples are transported to the mismatching regions with different
labels in the target domain. For SGW, three labeled target
samples are used for training, and the results are shown in
Figures 1(e) and 1(f). We observe that most source samples
are transported to the regions with the same labels in the tar-
get domain, which verifies the effect of Ωl(T) in Eq. (6). In
addition, in Figure 1(e), one target sample is usually trans-
ported from a group of source samples with the same label,
which demonstrates the effect of our proposed group entropic
regularization in Eq. (9).

5.2 Real-World Datasets
To further validate the effectiveness of our proposed ap-
proach, we conduct experiments on two benchmark real-
world datasets for object recognition and text classification,
respectively.

Object Recognition: We use Office and Caltech-256
datasets for the object recognition task. Office [Saenko et al.,
2010] includes images with 31 classes from three domains:
amazon (A), dslr (D) and webcam (W). We use the publicly
available SURF [Bay et al., 2006] and DeCAF6 [Donahue et
al., 2014] features, and the dimensions of SURF and DeCAF6

features are 800 and 4096, respectively. Caltech-256 (C)
[Griffin et al., 2007] includes images with 256 classes, and
the same 800-d SURF features are publicly available. Fol-
lowing [Tsai et al., 2016; Yan et al., 2017b], we use the 10
overlapping classes between two datasets to construct classi-
fication tasks.

Text Classification: The text classification task is con-

ducted on the Reuters multilingual dataset [Amini et al.,
2009], which includes six classes and five languages, i.e., En-
glish, French, German, Italian and Spanish. Each language is
taken as a domain. Similar to the experimental setup in [Li et
al., 2014; Tsai et al., 2016], The documents are represented
by TF-IDF features and are preprocessed by PCA with 60%
energy preserved.

5.3 Baseline Methods
We compare with SVM [Chang and Lin, 2011], CCA+OT,
EGW, SHFA [Li et al., 2014], CDLS [Tsai et al., 2016] and
DCA [Yan et al., 2017b]. Among these methods, SVM is
a simple baseline without considering source domain data.
CCA+OT firstly performs CCA on source and target data,
and then transports source data into the target domain based
on a classical optimal transport method. EGW learns the op-
timal transport matrix by solving the EGW problem, and an
SVM classifier is trained on the transported source samples.
SHFA, CDLS and DCA are three state-of-the-art HDA meth-
ods, which are performed in a semi-supervised HDA fashion,
where some unlabeled target samples are used for training.

For simplicity and fair comparison, we set the trade-off pa-
rameter of SVM to C = 1 for all the methods and tasks. The
parameters of SGW are empirically set to ε = 0.01, λ = 1
and γ = 1, and the sensitivity study is provided in Section
5.6. For the baseline methods, we follow the previous work
[Li et al., 2014] to search the parameters in the spaces recom-
mended by the original papers and report their best results.
We repeatedly conduct experiments 10 trials and report the
average classification accuracies.

5.4 Results on Object Recognition Tasks
Office includes three domains (i.e., A, D and W), which
are represented as two types of features (i.e., SURF and
DeCAF6), and Caltech-256 dataset includes one domain (i.e.,
C) with SURF features. We take C as the source domain, and
a domain in Office as the target domain, and vice versa.

We randomly choose 3 target samples per class as the la-
beled target data, and the rest target samples as the test data.
20 labeled source samples are used for training for the source
domains A, W and C, and 5 labeled source samples are used
for training for the source domain D, since the number of
samples in D is much smaller.

Table 1 presents the results of the Office-Caltech dataset.
SGW achieves the best results, which demonstrates the ef-
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Figure 2: Classification results on the text classification tasks. Spanish is taken as the target domain, and the source domains are selected
from (a) English, (b) French, (c) German, and (d) Italian, respectively.
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Figure 3: Sensitivity study of SGW on the task C(SURF) →
W(DeCAF6) w.r.t. parameters ε, λ and γ.

fectiveness of our proposed method. The domain adapta-
tion methods CCA+OT, SHFA, CDLS and DCA outperform
SVM, which verifies that leveraging knowledge from hetero-
geneous source domain is beneficial for the target task. Com-
pared with SVM, EGW achieves improvements in most cases,
which shows that the EGW discrepancy is helpful for match-
ing the data structure between two heterogeneous domains.
However, there are still a few cases that EGW is even worse
than SVM. A possible reason is that the samples from dif-
ferent categories could be mixed up after transportation since
the label information is not employed in EGW. Our proposed
SGW obtains consistent better performance than the baseline
methods. We attribute this to the effective use of label infor-
mation for guiding the optimal transport.

5.5 Results on Text Classification Tasks
Similar to the settings in [Li et al., 2014; Tsai et al., 2016],
we take Spanish as the target domain, and the other four lan-
guages as the source domain, respectively. We randomly
choose 100 source samples per class as the labeled source
data. For the target domain, {5, 10, 15, 20} samples are used
as labeled training samples, and the remaining samples are
used as test data, among which 3,000 samples are unlabeled
training data for semi-supervised learning.

Figure 2 shows the results on the text classification tasks
w.r.t. different numbers of labeled target samples. We ob-
serve that the performance of all the methods increases when
using more labeled target samples for training, which val-
idates the effect of adding more labeled target data. Our
SGW approach consistently outperforms all the baselines,
which demonstrates the effectiveness of our proposed method

Table 2: Running time on the task C(SURF)→W(DeCAF6).

SVM SHFA CDLS DCA CCA+OT EGW SGW
Time (s) 0.22 21.53 34.14 83.63 5.47 2.06 2.17

for heterogeneous domain adaptation.

5.6 Sensitivity Study
We take the task C(SURF) → W(DeCAF6) as an exam-
ple to study the parameter sensitivity of SGW. We vary
the trade-off parameters ε, λ and γ in the search space
{0.001, 0.01, 0.1, 1, 10, 100}, and plot the results in Figure
3. DCA achieves the second best result on this task, thus
is taken as the reference. In most cases, SGW outperforms
DCA, which demonstrates that the performance of SGW is
stable to the trade-off parameters in the certain range. We
have similar observations on other tasks.

5.7 Running Time Results
We take C(SURF)→W(DeCAF6) as a representative task to
evaluate the efficiencies of all the methods. The experiments
are performed on a workstation with Xeon 3.40 GHz CPU
and 16 GB of RAM. Table 2 presents the running time re-
sults. SVM only involves target data, thus achieves the short-
est running time. SHFA, CDLS and DCA learn feature trans-
formations and classifiers, and have to solve quadratic pro-
gramming problems with heavy matrix computations. As a
result, the running times of them are much longer than SVM.
EGW and SGW usually converge to a good solution within
a few iterations. Therefore, the running times of EGW and
SGW are less than those of SHFA, CDLS and DCA.

6 Conclusion
In this paper, we propose a new algorithm using optimal
transport for heterogeneous domain adaptation. We learn an
optimal transport matrix to transport labeled source samples
into the target domain. To incorporate label information to
guide the learning of optimal transport, we propose a semi-
supervised entropic Gromov-Wasserstein discrepancy, which
remains the metric matrices on source data before and after
transportation, and makes the labeled target and transported
source samples follow similar conditional distributions. We
conduct extensive experiments on both synthetic and real-
world datasets, and the results demonstrate the effectiveness
and efficiency of our proposed method.
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