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Learning with Augmented Features for
Supervised and Semi-Supervised

Heterogeneous Domain Adaptation
Wen Li, Student Member, IEEE , Lixin Duan, Dong Xu, Senior Member, IEEE , and Ivor W. Tsang

Abstract—In this paper, we study the heterogeneous domain adaptation (HDA) problem, in which the data from the source domain
and the target domain are represented by heterogeneous features with different dimensions. By introducing two different projection
matrices, we first transform the data from two domains into a common subspace such that the similarity between samples across
different domains can be measured. We then propose a new feature mapping function for each domain, which augments the
transformed samples with their original features and zeros. Existing supervised learning methods (e.g., SVM and SVR) can be readily
employed by incorporating our newly proposed augmented feature representations for supervised HDA. As a showcase, we propose
a novel method called Heterogeneous Feature Augmentation (HFA) based on SVM. We show that the proposed formulation can be
equivalently derived as a standard Multiple Kernel Learning (MKL) problem, which is convex and thus the global solution can be
guaranteed. To additionally utilize the unlabeled data in the target domain, we further propose the semi-supervised HFA (SHFA)
which can simultaneously learn the target classifier as well as infer the labels of unlabeled target samples. Comprehensive
experiments on three different applications clearly demonstrate that our SHFA and HFA outperform the existing HDA methods.

Index Terms—Heterogeneous domain adaptation, domain adaptation, transfer learning, augmented features

1 INTRODUCTION

IN real-world applications, it is often expensive and time-
consuming to collect the labeled data. Domain adap-

tation, as a new machine learning strategy, has attracted
growing attention because it can learn robust classifiers
with very few or even no labeled data from the target
domain by leveraging a large amount of labeled data from
other existing domains (a.k.a., source/auxiliary domains).

Domain adaptation methods have been successfully
used for different research fields such as natural language
processing and computer vision [1]–[7]. According to the
supervision information in the target domain, the domain
adaptation methods can generally be divided into three cat-
egories: supervised domain adaptation by only using the
labeled data in the target domain, semi-supervised domain
adaptation by using both the labeled and unlabeled data
in the target domain, and unsupervised domain adapta-
tion by only using unlabeled data in the target domain.
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However, most existing methods assume that the data from
different domains are represented by the same type of
features with the same dimension. Thus, they cannot deal
with the problem where the dimensions of data from the
source and target domains are different, which is known as
heterogeneous domain adaptation (HDA) [8], [9].

In the literature, a few approaches have been proposed
for the HDA problem. To discover the connection between
different features, some work exploited an auxiliary dataset
which encodes the correspondence between different types
of features. Dai et al. [8] proposed to learn a feature trans-
lator between two features from two domains, which is
modeled by the conditional probability of one feature given
the other one. Such feature translator is learnt from an
auxiliary dataset which contains the co-occurrence of these
two types of features. A similar assumption was also used
in [9], [10] for text-aid image clustering and classification.
Others proposed to use an explicit feature correspondence,
for example, the bilingual dictionary in cross-language text
classification task. Based on the structural correspondence
learning (SCL) [1], two methods [11], [12] were recently pro-
posed to extract the so-called pivot features from the source
and target domains, which are specifically designed for the
cross-language text classification task. These pivot features
are constructed by text words which have explicit semantic
meanings. They either directly translated the pivot features
from one language to the other or modified the original
SCL to select pairs of pivot words from different languages.
However, it is unclear how to build such correspondence
for more general HDA tasks such as the object recognition
task where only the low-level visual features are provided.

0162-8828 c© 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



LI ET AL.: LEARNING WITH AUGMENTED FEATURES 1135

Fig. 1. Samples from different domains are represented by different features, where red crosses, blue strips, orange triangles and green cir-
cles denote source positive samples, source negative samples, target positive samples and target negative samples, respectively. By using two
projection matrices P and Q, we transform the heterogenous samples from two domains into an augmented feature space.

For more general HDA tasks, Shi et al. [13] proposed a
method called Heterogeneous Spectral Mapping (HeMap)
to discover a common feature subspace by learning two fea-
ture mapping matrices as well as the optimal projection of
the data from both domains. Harel and Mannor [14] learnt
rotation matrices to match source data distributions to that
of the target domain. Wang and Mahadevan [15] used the
class labels of training data to learn the manifold alignment
by simultaneously maximizing the intra-domain similar-
ity and the inter-domain dissimilarity. By kernelizing the
method in [16], Kulis et al. [17] proposed to learn an asym-
metric kernel transformation to transfer feature knowledge
between the data from the source and target domains.
However, these existing HDA methods were designed for
the supervised learning scenario. For these methods, it is
unclear how to learn the projection matrices or transfor-
mation metric by utilizing the abundant unlabeled data
in the target domain which is usually available in many
applications.

In this work, we first propose a new method called
Heterogeneous Feature Augmentation (HFA) for super-
vised heterogeneous domain adaptation. As shown in
Fig. 1, considering the data from different domains are rep-
resented by features with different dimensions, we first
transform the data from the source and target domains
into a common subspace by using two different projec-
tion matrices P and Q. Then, we propose two new feature
mapping functions to augment the transformed data with
their original features and zeros. With the new augmented
feature representations, we propose to learn the projec-
tion matrices P and Q by using the standard SVM with
the hinge loss function in a linear case. We also describe
its kernelization in order to efficiently cope with the data
with very high dimension. To simplify the nontrivial opti-
mization problem in HFA, we introduce an intermediate
variable H called as a transformation metric to combine
P and Q. In our preliminary work [18], we proposed an
alternating optimization algorithm to iteratively learn an
individual transformation metric H and a classifier for each
class. However, the global convergence remains unclear and
there may be pre-mature convergence. In this work, we
equivalently reformulate it into a convex optimization prob-
lem by decomposing H into a linear combination of a set
of rank-one positive semi-definite (PSD) matrices, which
shares a similar formulation with the well-known Multiple
Kernel Learning (MKL) problem [19]. Therefore, the global

solution can be obtained easily by using the existing MKL
solvers.

Moreover, we further extend our HFA to semi-
supervised HFA or SHFA in short by additionally utilizing
the unlabeled data in the target domain. While learning the
transformation metric H, we also infer the labels for the
unlabeled target samples. Considering we need to solve
a non-trivial mixed integer programming problem when
inferring the labels of unlabeled target training data, we
first relax the objective of SHFA into a problem of finding
the optimal linear combination of all possible label candi-
dates. Then we also use the linear combination of these
rank-one PSD matrices to replace H as in HFA. Finally,
we further rewrite the problem as a convex MKL problem
which can be readily solved by existing MKL solvers.

The remainder of this paper is organized as follows.
The proposed HFA method and SHFA are introduced in
Section 2 and Section 3, respectively. Extensive experi-
mental results are presented in Section 4, followed by
conclusions and future work in Section 5.

2 HETEROGENEOUS FEATURE AUGMENTATION

In the remainder of this paper, we use the superscript ′ to
denote the transpose of a vector or a matrix. We define In
as the n× n identity matrix and On×m as the n×m matrix
of all zeros. We also define 0n, 1n ∈ R

n as the n× 1 column
vectors of all zeros and all ones, respectively. For simplicity,
we also use I, O, 0 and 1 instead of In, On×m, 0n and 1n
when the dimension is obvious. The �p-norm of a vector

a = [a1, . . . , an]′ is defined as ‖a‖p =
(∑n

i=1 ap
i

) 1
p . We also

use ‖a‖ to denote the �2-norm. The inequality a ≤ b means
that ai ≤ bi for i = 1, . . . ,n. Moreover, a ◦ b denotes the
element-wise product between the vectors a and b, i.e., a ◦
b = [a1b1, . . . , anbn]′. And H � 0 means that H is a positive
semi-definite (PSD) matrix.

In this work, we assume there are only one source
domain and one target domain. We are provided with
a set of labeled training samples { (xs

i , ys
i )
∣∣ns
i=1} from the

source domain as well as a limited number of labeled
samples { (xt

i, yt
i)
∣∣nt
i=1} from the target domain, where

ys
i and yt

i are the labels of the samples xs
i and xt

i ,
respectively, and ys

i , yt
i ∈ {1,−1}. The dimensions of

xs
i and xt

i are ds and dt, respectively. Note that in
the HDA problem, ds 	= dt. We also define Xs =
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[xs
1, . . . , xs

ns
] ∈ R

ds×ns and Xt = [xt
1, . . . , xt

nt
] ∈ R

dt×nt

as the data matrices for the source and target domains,
respectively.

2.1 Heterogeneous Feature Augmentation
Daume III [3] proposed Feature Replication (FR) to aug-
ment the original feature space R

d into a larger space
R

3d by replicating the source and target data for homoge-
neous domain adaptation. Specifically, for any data point
x ∈ R

d, the feature mapping functions ϕs and ϕt for the
source and target domains are defined as ϕs(x) = [x′, x′, 0′d]′
and ϕt(x) = [x′, 0′d, x′]′. Note that it is not meaningful to
directly use the method in [3] for the HDA task by simply
padding zeros to make the dimensions of the data from two
domains become the same, because there would be no cor-
respondences between the heterogeneous features in this
case.

To effectively utilize the heterogeneous features from
two domains, we first introduce a common subspace for
the source and target data so that the heterogeneous fea-
tures from two domains can be compared. We define the
common subspace as R

dc , and any source sample xs and
target sample xt can be projected onto it by using two pro-
jection matrices P ∈ R

dc×ds and Q ∈ R
dc×dt , respectively.

Note that promising results have been shown by incorpo-
rating the original features into the augmented features [3]
to enhance the similarities between data from the same
domain. Motivated by [3], we also incorporate the orig-
inal features in this work and then augment any source
and target domain samples xs ∈ R

ds and xt ∈ R
dt by

using the augmented feature mapping functions ϕs and ϕt
as follows:

ϕs(xs) =
⎡
⎣

Pxs

xs

0dt

⎤
⎦ and ϕt(xt) =

⎡
⎣

Qxt

0ds

xt

⎤
⎦ . (1)

After introducing P and Q, the data from two domains
can be readily compared in the common subspace. It is
worth mentioning that our newly proposed augmented fea-
tures for the source and target samples in (1) can be readily
incorporated into different methods (e.g., SVM and SVR),
making these methods applicable for the HDA problem.

Specifically, we use the standard SVM formulation
with the hinge loss as a showcase for the supervised
heterogeneous domain adaptation, which is referred as
Heterogeneous Feature Augmentation (HFA). To addition-
ally utilize the unlabeled data in the target domain, we also
develop the semi-supervised HFA (SHFA) method based on
ρ-SVM with the squared hinge loss for the semi-supervised
heterogeneous domain adaptation task. Details of the two
methods are introduced below.

2.2 Proposed Method
We define the feature weight vector w = [w′c,w′s,w′t]′ ∈
R

dc+ds+dt for the augmented feature space, where wc ∈
R

dc ,ws ∈ R
ds and wt ∈ R

dt are also the weight vectors
defined for the common subspace, the source domain and
the target domain, respectively. We then propose to learn
the projection matrices P and Q as well as the weight vec-
tor w by minimizing the structural risk functional of SVM.

Formally, we present the formulation of our HFA method
as follows:

min
P,Q

min
w,b,ξ s

i ,ξ
t
i

1
2
‖w‖2 + C

( ns∑
i=1

ξ s
i +

nt∑
i=1

ξ t
i

)
, (2)

s.t. ys
i (w
′ϕs(xs

i )+ b) ≥ 1− ξ s
i , ξ

s
i ≥ 0; (3)

yt
i(w
′ϕt(xt

i)+ b) ≥ 1− ξ t
i , ξ

t
i ≥ 0; (4)

‖P‖2F ≤ λp, ‖Q‖2F ≤ λq,

where C > 0 is a tradeoff parameter which balances the
model complexity and the empirical losses on the training
samples from two domains, and λp, λq > 0 are prede-
fined parameters to control the complexities of P and Q,
respectively.

To solve (2), we first derive the dual form of the inner
optimization problem in (2). Specifically, we introduce dual
variables {αs

i |ns
i=1} and {αt

i |nt
i=1} for the constraints in (3)

and (4), respectively. By setting the derivatives of the
Lagrangian of (2) with respect to w, b, ξ s

i and ξ t
i to zeros, we

obtain the Karush-Kuhn-Tucker (KKT) conditions as: w =∑ns
i=1 α

s
i ys

iϕs(xs
i )+

∑nt
i=1 α

t
i y

t
iϕt(xt

i),
∑ns

i=1 α
s
i ys

i +
∑nt

i=1 α
t
i y

t
i = 0

and 0 ≤ αs
i , α

t
i ≤ C. With the KKT conditions, we arrive at

the dual problem as follows:

min
P,Q

max
α

1′α − 1
2
(α ◦ y)′KP,Q(α ◦ y), (5)

s.t. y′α = 0, 0 ≤ α ≤ C1,

‖P‖2F ≤ λp, ‖Q‖2F ≤ λq,

where α = [αs
1, . . . , α

s
ns
, αt

1, . . . , α
t
nt

]′ ∈ R
ns+nt is a vector

of the dual variables, y = [y′s,y′t]′ ∈ {+1,−1}ns+nt is the
label vector of all training samples, ys = [ys

1, . . . , ys
ns

]′ ∈
{+1,−1}ns is the label vector of samples from the source
domain, yt = [yt

1, . . . , yt
nt

]′ ∈ {+1,−1}nt is the label vec-
tor of samples from the target domain, and KP,Q =[

X′s(Ids + P′P)Xs X′sP′QXt
X′tQ′PXs X′t(Idt +Q′Q)Xt

]
∈ R

(ns+nt)×(ns+nt) is the

derived kernel matrix for the samples from both domains.
To solve the optimization problem in (5), the dimen-

sion of the common subspace (i.e., dc) must be given
beforehand. However, it is usually nontrivial to determine
the optimal dc. Observing that in the kernel matrix KP,Q
in (5), the projection matrices P and Q always appear
in the forms of P′P,P′Q,Q′P and Q′Q, we then replace
these multiplications by defining an intermediate variable
H = [P,Q]′[P,Q] ∈ R

(ds+dt)×(ds+dt). Obviously, H is positive
semidefinite, i.e., H � 0. With the introduction of H, we can
throw away the parameter dc. Moreover, the common sub-
space becomes latent, because we do not need to explicitly
solve for P and Q any more.

With the definition of H, we reformulate the optimiza-
tion problem in (5) as follows:

min
H�0

max
α

1′α − 1
2
(α ◦ y)′KH(α ◦ y), (6)

s.t. y′α = 0, 0 ≤ α ≤ C1,

trace(H) ≤ λ,

where KH = X′(H + I)X, X =
[

Xs Ods×nt

Odt×ns Xt

]
∈

R
(ds+dt)×(ns+nt) and λ = λp + λq.
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Thus far, we have successfully converted our original
HDA problem, which learns two projection matrices P and
Q, into a new problem of learning a transformation metric H.
We emphasize that this new problem has two main advan-
tages: i) it avoids determining the optimal dimension of the
common subspace beforehand; and ii) as the common sub-
space becomes latent after the introduction of H, we only
need to optimize α and H for our proposed method.

However, there are still two major limitations for the cur-
rent formulation of HFA in (6): i) The transformation metric
H is linear, which may not be effective for some recognition
tasks. ii) The size of H grows with the dimensions of the
source and target data (i.e., ds and dt). It is computation-
ally expensive to learn the linear metric H in (6) for some
real-world applications (e.g., text categorization) with very
high dimensional data. In order to effectively deal with high
dimensional data, inspired by [17], in the next subsection
we will apply kernelization to the data from the source and
target domains and show that (6) can be solved in a kernel
space by learning a nonlinear transformation metric with
its size independent from the feature dimensions.

2.3 Nonlinear Feature Transformation
Note that the size of the linear transformation metric H
is related to the feature dimension, and thus it is compu-
tationally expensive for very high dimension data. In this
subsection, we will show that by applying kernelization,
the transformation metric is independent from the feature
dimension and grows only with respect to the number of
training data from both domains.

Let us denote the kernel on the source domain samples
as Ks = �′s�s ∈ R

ns×ns where �s = [φs(xs
1), . . . , φs(xs

ns
)]

and φs(·) is the nonlinear feature mapping function induced
by Ks. Similarly, we denote the kernel on the target
domain samples as Kt = �′t�t ∈ R

nt×nt where �t =
[φt(xt

1), . . . , φt(xt
nt
)] and φt(·) is the nonlinear feature map-

ping function induced by Kt. As in the linear case, we
can correspondingly define the augmented features ϕs(xs)

and ϕt(xt) in (1) for the nonlinear features of two domains
by replacing xs and xt with φs(xs) and φt(xt), respec-
tively. Denoting the dimensions of the nonlinear features
φs(xs) and φt(xt) as d̃s and d̃t, we can also derive an
optimization problem as in (6) to solve a transformation
metric H ∈ R

(d̃s+d̃t)×(d̃s+d̃t) which maps the different non-
linear features from two domains into a common feature
space. Correspondingly, the kernel can be written as KH =
�′(H+ I)� where � =

[
�s Od̃s×nt

Od̃t×ns
�t

]
∈ R

(d̃s+d̃t)×(ns+nt).

However, we usually do not know about the explicit
forms of the nonlinear feature mapping functions φs(·) and
φt(·) and hence the dimensions of H cannot be determined.
Even in some special cases that the explicit forms of φs(·)
and φt(·) can be derived, the dimensions of the nonlinear
features, i.e. d̃s and d̃t, are usually very high and hence it is
very computationally expensive to solve H.

Inspired by [17], we define a nonlinear transforma-
tion matrix H̃ ∈ R

(ns+nt)×(ns+nt) which satisfies that H =
�K− 1

2 H̃K− 1
2�′ where K =

[
Ks Ons×nt

Ont×ns Kt

]
∈ R

(ns+nt)×(ns+nt)

and K
1
2 is the symmetric square root of K. Now we show

that the kernelization version of (6) can be derived as an
optimization problem on H̃ rather than H.

It is easy to verify that trace(H̃) = trace(H) ≤ λ.
Moreover, the kernel matrix can be written as KH =
�′(H + I)� = K

1
2 (H̃ + I)K

1
2 = KH̃. Then we arrive at the

formulation of our proposed HFA method after applying
kernelization as follows:

min
H̃�0

max
α

1′α − 1
2
(α ◦ y)′KH̃(α ◦ y), (7)

s.t. y′α = 0, 0 ≤ α ≤ C1,

trace(H̃) ≤ λ.
Hence, we optimize H̃ in (7) rather than directly solving
H. Note the size of H̃ is independent from the feature
dimensions d̃s and d̃t.

Intuitively, one can observe that the main differences
between the formulations of the nonlinear HFA in (7) and
the linear HFA in (6) are: i) we use K

1
2 in the nonlinear HFA

to replace X in the linear case; ii) we also define a new non-
linear transformation metric H̃ which only depends on the
numbers of training samples ns and nt instead of using H
which depends on the feature dimensions ds and dt. Despite
the above differences, the two formulations share the same
form from the perspective of optimization. Therefore, we
will only discuss the nonlinear case in the remainder of
this paper while the linear case can be similarly derived by
replacing K

1
2 ∈ R

(ns+nt)×(ns+nt) and H̃ ∈ R
(ns+nt)×(ns+nt) with

X ∈ R
(ds+dt)×(ns+nt) and H ∈ R

(ds+dt)×(ds+dt), respectively. We
also use H instead of H̃ below for better presentation.

2.4 A Convex Formulation
To solve the optimization problem in (7), in our prelimi-
nary work [18], we proposed an alternating optimization
approach in which we iteratively solve an SVM prob-
lem with respect to α and a semi-definite programming
(SDP) problem with respect to H. However, the global con-
vergence remains unclear and there may be pre-mature
convergence. In this subsection, we show that (7) can be
equivalently reformulated as a convex MKL problem so
that the global solution can be guaranteed by using the
existing MKL solvers [19].

As pointed in [19], the Ivanov regularization can be
replaced with some Tikhonov regularization and vice verse
with the appropriate choice of regularization parameter,
which means we can write the trace norm regularization
in (7) either as a constraint or as a regularizer term in
the objective function. Formally, let us denote μ(H) =
maxα∈A 1′α − 1

2 (α ◦ y)′KH(α ◦ y) where A = {α|y′α = 0, 0 ≤
α ≤ C1}, then the problem in (7) can also be reformulated
as:

min
H�0

μ(H)+ η trace(H), (8)

where η is a tradeoff parameter. By properly setting η, the
above optimization problem yields the same solution as the
original problem in (7) [19].

To avoid solving the non-trivial SDP problem as in [18],
we propose to decompose H as a linear combination of a set
of positive semi-definite (PSD) matrices. Inspired by [20],
in this work, we use the set of rank-one normalized PSD
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matrices which is defined as M = {Mr|∞r=1} where Mr =
hrh′r, hr ∈ R

(ns+nt) and h′rhr = 1. Then, any PSD matrix H in
(8) can be represented as a linear combination of the rank-
one PSD matrices in M, i.e., H = Hθ = ∑∞

r=1 θrMr where
the linear combination coefficient vector θ = [θ1, . . . , θ∞]′,
θ ≥ 0. Although there are an infinite number of matrices in
M (i.e., the index r goes from 1 to∞), only considering the
linear combination vector θ with a finite number of non-
zero entries is sufficient to represent H as shown in [20].

Note that we have trace(H) = trace(
∑∞

r=1 θrMr) =∑∞
r=1 θrtrace(Mr) = 1′θ . Instead of directly solving for the

optimal H in (8), we show in the following theorem that it
is equivalent to solving for the optimal linear combination
coefficient vector θ :

Theorem 1. Given that θ∗ is the optimal solution to the follow-
ing optimization problem,

min
θ≥0

μ(Hθ )+ η 1′θ , (9)

Hθ∗ is also the optimum to the optimization problem in (8).

Proof. Let us denote the objective function in (8) as F(H) =
μ(H) + η trace(H) and the objective function in (9) as
G(θ) = μ(Hθ )+η 1′θ , and denote the optimums to (8) and
(9) as H∗ = arg minH�0 F(H) and θ∗ = arg minθ≥0 G(θ),
respectively. To show Hθ∗ is also the optimum of (8), we
need to prove F(Hθ∗) = F(H∗).

On one hand, we have F(Hθ∗) ≥ F(H∗), because H∗
is the optimal solution to (8). On the other hand, we
will prove it as F(H∗) ≥ G(θ∗) = F(Hθ∗). Specifically, for
any PSD matrix H and a vector θ which satisfies H =
Hθ = ∑∞r=1 θrMr , we have F(H) = μ(H) + η trace(H) =
μ(Hθ ) + η 1′θ = G(θ) ≥ G(θ∗) in which G(θ) ≥ G(θ∗)
is due to the fact that θ∗ is the optimal solution to (9).
Thus we have F(H∗) ≥ G(θ∗). Moreover, since G(θ∗) =
μ(Hθ∗) + η 1′θ∗ = μ(Hθ∗) + η trace(Hθ∗) = F(Hθ∗), we
have F(H∗) ≥ G(θ∗) = F(Hθ∗).

Finally, we conclude that F(Hθ∗) = F(H∗), because
we have proved F(Hθ∗) ≥ F(H∗) and F(H∗) ≥ G(θ∗) =
F(Hθ∗). This completes the proof.
By replacing the Tikhonov regularization (9) with the

corresponding Ivanov regularization (i.e. the regularizer
term 1′θ is rewritten as the constraint), we reformulate the
optimization problem of HFA as:

min
θ

max
α∈A 1′α − 1

2
(α ◦ y)′K

1
2 (Hθ + I)K

1
2 (α ◦ y), (10)

s.t. Hθ =
∞∑

r=1

θrMr, Mr ∈M,

1′θ ≤ λ, θ ≥ 0.

By setting θ ← 1
λ
θ , it can be further rewritten as:

min
θ∈Dθ

max
α∈A 1′α − 1

2
(α ◦ y)′

∞∑
r=1

θrKr(α ◦ y), (11)

where Kr = K
1
2 (λMr + I)K

1
2 and Dθ = {θ |1′θ ≤ 1, θ ≥ 0}. It

is an Infinite Kernel Learning (IKL) problem with each base
kernel as Kr, which can be readily solved with the existing
MKL solver [19], [21].

2.5 Solution
One problem in (11) is that there are an infinite number of
base kernels because the set M contains infinite rank-one
matrices. However, a finite number of rank-one matrices are
sufficient to represent the matrix H [20]. Inspired by [21],
we solve (11) based on a small number of base kernels
which are constructed by using the cutting-plane algorithm.
Let us introduce a dual variable τ for θ in (11) and write
the dual form as:

max
τ,α∈A 1′α − τ, (12)

s.t.
1
2
(α ◦ y)′Kr(α ◦ y) ≤ τ, ∀r,

which has an infinite number of constraints. With the
cutting-plane algorithm, we can approximate (12) by iter-
atively adding a kernel for which the corresponding con-
straint is violated according to the current solution. The
kernel associated with this constraint is called an active ker-
nel. To find the most active kernel, we need to maximize
the left-hand side of the constraint in (12), which is given
as:

max
M∈M

1
2
(α ◦ y)′KM(α ◦ y), (13)

where KM = K
1
2 (λM+ I)K

1
2 . It has a closed form solution

as M = hh′ ∈ R
(ns+nt)×(ns+nt) with h = K

1
2 (α◦y)

‖K 1
2 (α◦y)‖

.

We summarize the proposed algorithm in Algorithm 1.
First, we initialize the set of rank-one PSD matrices M with
M1 = h1h′1 where h1 is a unit vector. Based on the current
M, we solve the MKL problem in (11) to obtain the optimal
α and θ . After that, we find the most active kernel which is
decided by a rank-one PSD matrix M as in (13). By using the
closed form solution of (13), we obtain a new rank-one PSD
matrix and add it into the current set M. Then we solve
the MKL problem again. The above steps are repeated until
convergence. After obtaining the optimal solution α and H
to (11), we can predict any test sample x from the target
domain by using the following target decision function:

f (x) = (α ◦ y)′K
1
2 (H+ I)

[
Ons×nt

K
− 1

2
t

]
kt + b, (14)

where kt = [k(xt
1, x), . . . , k(xt

nt
, x)]′ and k(xi, xj) =

φt(xi)
′φt(xj) is a predefined kernel function for two data

samples xi and xj in the target domain.
Complexity Analysis: In our HFA, we first calculate K

1
2

once at the beginning, which costs O(n3) time with n = ns+
nt being the total number of training samples1. After that,
we perform the cutting-plane algorithm (i.e., Algorithm 1),
in which we iteratively train an MKL classifier and find
the most violated rank-one matrix as in (13). As we have
an efficient closed form solution for solving (13), the major
time cost of Algorithm 1 is from the training of MKL at
each iteration. However, the time complexity of MKL has
not been theoretically analyzed. Usually, the MKL solver
needs to train an SVM classifier for a few iterations. The
empirical analysis shows that optimizing the QP problem

1. More accurately, the time complexity for solving K
1
2 is O(n3

s+n3
t ),

because the kernel matrix K is a block-diagonal matrix.
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Algorithm 1 Heterogeneous Feature Augmentation

Input: Labeled source samples { (xs
i , ys

i )
∣∣ns
i=1} and labeled

target samples { (xt
i, yt

i)
∣∣nt
i=1}.

1: Set r = 1 and initialize M1 = {M1} with M1=h1h′1 and
h1 = 1√

ns+nt
1ns+nt .

2: repeat
3: Solve θ and α in (11) based on Mr by using the

existing MKL solver [19].
4: Obtain a rank-one PSD matrix Mr+1 by solving (13).
5: Set Mr+1 =Mr

⋃{Mr+1}, and r = r+ 1.
6: until The objective converges.

Output: α and H = λ∑r θrMr.

in SVM is about O(n2.3) [22]. Therefore, the complexity of
MKL is O(Ln2.3) with L being the number of iterations in
MKL. Thus, the total time complexity of our HFA is O(n3+
TLn2.3), where T is the number of iterations in Algorithm 1.
In practice, both L and T are not very large.

2.6 Convergence Analysis
Let us represent the objective function in (11) as F(α, θ) =
1′α− 1

2 (α ◦y)′
∑∞

r=1 θrKr(α ◦y), and also denote the optimal
solution to (11) as (α∗, θ∗) = arg minθ∈Dθ

maxα∈A F(α, θ).
We denote the optimal solution of the MKL problem at

the r-th iteration as (αr, θ r). Because there are at most r non-
zero elements in θ r, we assume these non-zero elements are
the first r entries in θ r for ease of presentation. Then, we
show in the following theorem that Algorithm 1 converges
to the global optimal solution:

Theorem 2. With Algorithm 1, F(αr, θ r) monotonically
decreases as r increases, and the following inequality holds

F(αr, θ r) ≥ F(α∗, θ∗) ≥ F(αr, er+1),

where er+1 ∈ Dθ is the vector with all zeros except the (r +
1)-th entry being 1. We also have F(αr, θ r) = F(α∗, θ∗) =
F(αr, er+1) when Algorithm 1 converges at the r-th iteration.

The theorem can be proved similarly as in [23]. We also
give the proof in the Appendix, which is available in
the Computer Society Digital Library at http://doi.ieee
computersociety.org/10.1109/TPAMI.2013.167. Moreover,
as indicated in [24], the cutting-plane algorithm stops in
a finite number of steps under some conditions. In our
experiments, the algorithm usually takes less than 50
iterations to obtain a sufficient accurate solution.

2.7 Discussion
Our work is related to the existing heterogeneous domain
adaptation methods. The pioneering works [8]–[12] are lim-
ited to some specific HDA tasks, because they required
additional information to transfer the source knowledge
to the target domain. For instance, Dai et al. [8] and
Zhu et al. [10] proposed to use either labeled or unla-
beled text corpora to aid image classification by assuming
images are associated with textual annotations. Such tex-
tual annotations can be additionally utilized to mine the
word co-occurrence from textual annotations of images and
words in text documents, which is served as a bridge to
transfer knowledge from the text documents to images.

To handle more general HDA tasks, other methods
have been proposed to explicitly discover a common sub-
space [13], [15], [17] without using additional information,
such that original data from the source and target domains
can be measured in the common subspace. Specifically,
Shi et al. [13] proposed to learn feature mapping matri-
ces based on a spectral transformation for domains with
different features. Wang et al. [15] proposed to learn the fea-
ture mapping by using the manifold alignment. However,
such manifold assumption may not be satisfied in real-
world applications with very diverse data. Recently, Kulis
et al. [17] proposed a nonlinear metric learning method to
learn an asymmetric feature transformation for the source
and target data with high dimensions. They assume that
if one source sample and one target sample are from the
same category, the learned similarity between this pair of
samples should be large; otherwise, the similarity should
be small.

In contrast to [13], [15], [17], in our proposed HFA,
we simultaneously learn the common subspace and a
max-margin classifier by solving a convex optimization
problem, which shares a similar form with the MKL
formulation. We also propose the heterogeneous aug-
mented features by incorporating the original features
from two domains, in order to learn a more robust
classifier (see Section 4.3 for experimental comparisons).
Moreover, our work can also be extended to handle unla-
beled samples from the target domain as shown in the
next section.

3 SEMI-SUPERVISED HETEROGENEOUS
FEATURE AUGMENTATION

The unlabeled data has been demonstrated to be help-
ful for training a robust classifier in many applica-
tions [25]. For the traditional semi-supervised learning,
readers can refer to [26] for a comprehensive survey.
There are also many works on semi-supervised homo-
geneous domain adaptation, such as [27]–[29]. However,
most existing heterogeneous domain adaptation works [13],
[15], [17] were designed for the supervised setting,
and cannot utilize the abundant unlabeled data in
the target domain. Thus, we further propose semi-
supervised HFA to utilize the unlabeled data in the target
domain.

We still use {(xs
i , ys

i )|ns
i=1} and {(xt

i, yt
i)|nt

i=1} to represent the
labeled data from the source domain and the target domain,
respectively. Let us denote the unlabeled data in the tar-
get domain as {(xu

i , yu
i )|nu

i=1} where xu
i ∈ R

dt is an unlabeled
sample in the target domain, nu is the number of unlabeled
samples, and the label yu

i ∈ {−1,+1} is unknown. We also
denote yu = [yu

1, . . . , yu
nu

]′ as the label vector of all the unla-
beled data. Moreover, the total number of training samples
is denoted as n = ns + nt + nu.

3.1 Formulation
Since the labels of unlabeled data are unknown, we propose
to infer the optimal labeling yu for the unlabeled data in the
target domain when learning the classifier. Based on the ρ-
SVM with the squared hinge loss, we propose the objective
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for semi-supervised heterogeneous domain adaptation as
follows:

min
yu,w,b,ρ,

P,Q,ξ s
i ,ξ

t
i ,ξ

u
i

1
2

(
‖w‖2 + b2

)
− ρ

+C
2

( ns∑
i=1

(ξ s
i )

2+
nt∑

i=1

(ξ t
i )

2

)
+Cu

2

nu∑
i=1

(ξu
i )

2 (15)

s.t. ys
i (w
′ϕs(xs

i )+ b) ≥ ρ − ξ s
i ,

yt
i(w
′ϕt(xt

i)+ b) ≥ ρ − ξ t
i ,

yu
i (w

′ϕt(xu
i )+ b) ≥ ρ − ξu

i ,

1′yu = δ, ‖P‖2F ≤ λp, ‖Q‖2F ≤ λq,

where ϕs(·) and ϕt(·) are defined in (1) for generating the
augmented features, and the constraint 1′yu = δ is used
as the prior information on the unlabeled data similarly
as in Transductive SVM (T-SVM) [25]. We refer to the
above method as Semi-supervised Heterogeneous Feature
Augmentation, or SHFA in short.

Similarly as in HFA, we only discuss the nonlin-
ear case for SHFA here, and the linear case can be
derived analogously. Let us define a kernel matrix K =[

Ks Ons×(nt+nu)

O(nt+nu)×ns Kt

]
∈ R

n×n where Ks ∈ R
ns×ns is the ker-

nel of source domain samples and Kt ∈ R
(nt+nu)×(nt+nu) is

the kernel of target domain samples. Then, by defining a
nonlinear transformation metric H ∈ R

n×n, we can derive
the dual form of (15) as follows:

min
y∈Y,H�0

max
α∈A −

1
2
α′(QH,y +D)α (16)

s.t. trace(H) ≤ λ,

where QH,y =
(

K
1
2 (H+ I)K

1
2 + 11′

)
◦ (yy′) ∈ R

n×n, y =
[y′s,y′t,y′u]′ is the label vector in which ys and yt are
given and yu is unknown, Y = {y ∈ {−1,+1}n|y =
[y′s,y′t,y′u]′, 1′yu = δ} is the domain of y, α =
[αs

1, . . . , α
s
ns
, αt

1, . . . , α
t
nt
, αu

1 , . . . , α
u
nu

]′ ∈ R
n with αs

i ’s, αt
i ’s

and αu
i ’s are the dual variables corresponding to the

constraints for source samples, labeled target samples
and unlabeled target samples, respectively, A = {α|α ≥
0, 1′α= 1} is the domain of α and D ∈ R

n×n is a diago-
nal matrix with the diagonal elements as 1

C for the labeled
data from both domains and 1

Cu
for the unlabeled target

data.

3.2 Convex Relaxation
Compared with HFA, one major challenge in (16) is
that we need to infer the optimal label vector y, which
is a mixed integer programming (MIP) problem. It is
an NP problem and is computationally expensive to be
solved [30]–[32] because there are possibly an exponen-
tial number of feasible labeling candidates y’s. Inspired
by [30]–[32], instead of directly finding the optimal label-
ing y, we seek for an optimal linear combination of the
feasible labeling candidates y’s, which leads to a lower-
bound of the original optimization problem as described
below.

Proposition 1. The objective of (16) is lower-bounded by the
optimum of the following optimization problem:

min
γ∈Dγ ,H�0

max
α∈A −

1
2
α′
(∑

l

γlQH,yl +D

)
α (17)

s.t. trace(H) ≤ λ,

where yl is the l-th feasible labeling candidate, γ =
[γ1, . . . , γ|Y|]′ is the coefficient vector for the linear combi-
nation of all feasible labeling candidates and Dγ = {γ |γ ≥
0, 1′γ ≤ 1} is the domain of γ .

Proof. The proof is provided in the Appendix, available
online.
Another challenge in (16) or (17) is to solve the posi-

tive semi-definite matrix H. We apply a similar strategy
here as used in HFA to solve the optimization problem in
(17). Specifically, we decompose H into a linear combina-
tion of a set of rank-one PSD matrices, i.e., H =∑∞r=1 θrMr
where Mr ∈ R

n×n is a rank-one PSD matrix and θr is the
corresponding combination coefficient, which leads to the
following optimization problem:

min
γ∈Dγ

min
θ∈Dθ

max
α∈A −

1
2
α′
(∑

r

∑
l

θrγlQMr,yl +D

)
α (18)

where QMr,yl =
(

K
1
2 (λMr + I)K

1
2 + 11′

)
◦ (ylyl

′) and Dθ =
{θ |θ ≥ 0, 1′θ ≤ 1}.

However, there are three variables, θ , γ and α in (18).
To efficiently solve this problem, we propose a relaxation
by combining θ and γ into one variable d. Specifically, let
us denote dk = θrγl where dk is the k-th entry of d. After
combining the two indices r and l into one index k, we
have 1′d = ∑

k dk =
∑

r
∑

l θrγl = (1′θ)(1′γ ) ≤ 1. Then we
reformulate the optimization problem in (18) as:

min
d∈Dd

max
α∈A −

1
2
α′
(∑

k

dkQMk,yk +D

)
α (19)

where QMk,yk =
(

K
1
2 (λMk + I)K

1
2 + 11′

)
◦ (ykyk

′) and Dd =
{d|1′d ≤ 1,d ≥ 0}.

Hence, we obtain an MKL problem as in (19) where each
base kernel is QMk,yk , and the primal form of (19) is as
follows:

min
d,wk,ρ,ξi

1
2

(∑
k

‖wk‖2
dk
+ C

n∑
i=1

νi(ξi)
2

)
− ρ (20)

s.t.
∑

k

w′kψk(xi) ≥ ρ − ξi,

1′d ≤ 1, d ≥ 0,

where d is the coefficient vector, ψk(·) is the k-th fea-
ture mapping function induced by the kernel QMk,yk =(

K
1
2 (λMk + I)K

1
2 + 11′

)
◦(ykyk

′), and νi is the weight for the
i-th sample which is 1 for labeled data from both domains
and Cu/C for unlabeled target data.
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3.3 Solution
Similar to HFA, there are also an infinite number of base
kernels in (19). We therefore employ the cutting-plane algo-
rithm to iteratively select a small set of active kernels. We
first write the dual form of (20) as follows:

max
τ,α∈A −τ (21)

s.t.
1
2
α′(QMk,yk +D)α ≤ τ, ∀k

where we have an infinite number of constraints. The
subproblem for selecting the most active kernel is:

max
y∈Y,M∈M

1
2
α′QM,yα, (22)

where QM,y =
(

K
1
2 (λM+ I)K

1
2 + 11′

)
◦ (yy′). Note that we

do not need to consider the constant term α′Dα in the above
formulation when selecting the most active kernel.

Given any y, finding the violated M is as the same as in
HFA. It can be obtained by solving (13) with the closed form

solution M = hh′ where h = K
1
2 (α◦y)

‖K 1
2 (α◦y)‖

. Then we substitute

M back into (22) and obtain

max
y∈Y,M∈M

1
2
α′QM,yα,

= max
y∈Y,M∈M

1
2
(α ◦ y)′

(
K

1
2 (λM+ I)K

1
2 + 11′

)
(α ◦ y),

= max
y∈Y λ

(α ◦ y)′K(α ◦ y)(α ◦ y)′K(α ◦ y)
(α ◦ y)′K(α ◦ y)

+(α ◦ y)′(K+ 11′)(α ◦ y)

= max
y∈Y (α ◦ y)′((λ+ 1)K+ 11′)(α ◦ y), (23)

which indicates that we only need to solve an optimization
problem on y. However, it is another MIP problem, and is
difficult to be solved. Similar to [30], [32], we employ an
approximated solution to (23) for finding the most violated
y. Specifically, we first rewrite (23) as:

max
y∈Y y′

(
K̃ ◦ (αα′)

)
y = max

y∈Y ‖
∑

i

yiαiφ̃(xi)‖2 (24)

where K̃ = (λ + 1)K + 11′ and φ̃(·) is the feature mapping
function induced by K̃. Following [30], [32], we use the �∞-
norm to approximate the �2-norm in (24), and the problem
becomes

max
y∈Y ‖

∑
i

yiαiφ̃(xi)‖∞

= max
y∈Y max

j=1,...,d̃

{∑
i

yiαizij, −
∑

i

yiαizij

}

= max
j=1,...,d̃

{
max
y∈Y

∑
i

yiαizij, max
y∈Y −

∑
i

yiαizij

}
(25)

where zij is the j-th entry of the feature vector φ̃(xi) =
[zi1, . . . , zid̃]′ with d̃ as the feature dimension.

To find the optimal y, we first obtain φ̃(x) by using
SVD decomposition on the kernel matrix K̃, which is also
known as the empirical kernel map [33]. Then we calcu-
late αizij for each feature dimension and each sample. For

Algorithm 2 Semi-supervised Heterogeneous Feature
Augmentation

Input: Labeled source samples { (xs
i , ys

i )
∣∣ns
i=1}, labeled tar-

get samples { (xt
i, yt

i)
∣∣nt
i=1}, and unlabeled target samples

{ (xu
i , yu

i )
∣∣nu
i=1} with the unknown yu

i ’s.
1: Train an SVM classifier f0 by only using the labeled

target samples.
2: Initialize the labeling candidate set Y = {y1} where y1 =

[y′s,y′t, ỹ′u]′ where ỹu is a feasible label vector obtained
by using the prediction from f0.

3: Initialize the rank-one matrices set M = {M1} with
M1 = h1h′1 and h1 = 1√

n
1n and set k = 1.

4: repeat
5: Set k = k+ 1.
6: Solve d and α in (19) based on Y and M by using

the existing MKL solver [19].
7: Find the violated yk by solving (25) and obtain

Mk=hh′ where h = K
1
2 (α◦yk)

‖K 1
2 (α◦yk)‖

.

8: Set M =M⋃{Mk}, Y = Y⋃{yk}.
9: until The objective converges.

Output: α, d, Y and M.

the j-th dimension, we can respectively obtain two label
vectors by a simple sorting operation to solve the two
inner problems in (25). Specifically, we first sort the unla-
beled samples in descending order according to αizij. For
maxy∈Y

∑
i yiαizij, the optimal label vector can be obtained

by setting the first (δ + nu)/2 unlabeled samples as pos-
itive and the remaining unlabeled samples as negative;
similarly for maxy∈Y −∑i yiαizij, the optimal label vec-
tor is obtained by setting the last (δ + nu)/2 unlabeled
samples as positive and remaining unlabeled samples as
negative. Finally, the most violated y is the label vector
with the maximum objective value among these 2d̃ label
vectors.

We summarize the algorithm for solving SHFA in
Algorithm 2. We first initialize the set of rank-one PSD
matrices M with M1 = h1h′1, and also initialize the label-
ing candidate set Y by using a feasible label vector y1. To
obtain ỹu in y1, we first sort the unlabeled training sam-
ples in descending order according to the prediction of the
classifier trained on the labeled target samples. Then ỹu is
obtained by setting the first (δ+nu)/2 unlabeled samples as
positive and the remaining samples as negative. Next, we
solve the MKL problem in (19) based on Y and M. After
that, we find a violated y and calculate the corresponding

M = hh′ where h = K
1
2 (α◦y)

‖K 1
2 (α◦y)‖

. We respectively add y and M

into Y and M and solve the MKL problem again. This pro-
cess is repeated until convergence. The time complexity can
be analyzed similarly as in HFA, which is O(n3 + TLn2.3)

with n = ns + nt + nu being the total number of training
samples2.

2. The time complexity of the sorting operation for d̃ times in find-
ing the optimal y is d̃nu log(nu), which is less than n2 log(n). When
the number of training samples (i.e., n) is large as in our experiments,
it can be ignored when compared with the time complexity O(Ln2.3)
for solving the MKL problem.
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After obtaining the optimal solution α, d, Y and M , we
can predict any test sample x from the target domain by
using the following target decision function:

f (x)=
∑

k

dk(α ◦ yk)
′K

1
2 (λMk+I)

[
Ons×(nt+nu)

K
− 1

2
t

]
kt+b, (26)

where kt=[k(xt
1, x), . . . , k(xt

nt
, x), k(xu

1, x), . . . , k(xu
nu
, x)]′ and

k(xi, xj) = φt(xi)
′φt(xj) is a predefined kernel function for

two data samples xi and xj in the target domain.

3.4 �p-MKL Extension
Recall that we have formulated our SHFA as an MKL prob-
lem in (20), in which the �1-norm constraint on the kernel
coefficient vector d (i.e. ‖d‖1 ≤ 1) is adopted. However,
the optimization problem in (20) can be extended to more
general �p-MKL by using �p-norm on d (i.e. ‖d‖p ≤ 1) as
follows:

min
d,wk,ρ,ξi

1
2

(∑
k

‖wk‖2
dk
+ C

n∑
i=1

νi(ξi)
2

)
− ρ (27)

s.t.
∑

k

w′kψk(xi) ≥ ρ − ξi,

‖d‖p ≤ 1, d ≥ 0,

where d, ψk(xi) and νi are as the same as defined in (20).
Thus, the original SHFA is a special case of (27) when
p = 1. The �p-MKL problem in (27) can also be solved by
Algorithm 2. The only difference is that we solve an �p-MKL
problem instead of �1-MKL in Step 6.

4 EXPERIMENTS

In this section, we evaluate our proposed HFA and SHFA
methods for object recognition, multilingual text categoriza-
tion and cross-lingual sentiment classification. We focus on
the heterogeneous domain adaptation problem with only
one source domain and one target domain. For the super-
vised heterogeneous domain adaptation setting, we only
utilize a limited number of labeled training samples in
the target domain; for the semi-supervised heterogeneous
domain adaptation setting, we additionally employ a large
number of unlabeled training samples in the target domain.

4.1 Setup
Object recognition: We employ a recently released Office
dataset3 used in [16], [17] for this task. This dataset con-
tains a total of 4106 images from 31 categories collected
from three sources: amazon (object images downloaded
from Amazon), dslr (high-resolution images taken from
a digital SLR camera) and webcam (low-resolution images
taken from a web camera). We follow the same protocols
in the previous work [17]. Specifically, SURF features [34]
are extracted for all the images. The images from amazon
and webcam are clustered into 800 visual words by using
k-means. After vector quantization, each image is repre-
sented as a 800 dimensional histogram feature. Similarly,
we represent each image from dslr as a 600-dimensional
histogram feature.

3. http://www.icsi.berkeley.edu/~saenko/projects.html

TABLE 1
Summarization of the Object Dataset

Including 31 Categories

In the experiments, dslr is used as the target domain,
while amazon and webcam are considered as two indi-
vidual source domains. We strictly follow the setting
in [16], [17] and randomly select 20 (resp., 8) train-
ing images per category for the source domain amazon
(resp., webcam). For the target domain dslr , 3 training
images are randomly selected from each category, and the
remaining dslr images are used for testing, which are
also used as the unlabeled training samples in the semi-
supervised setting. See Table 1 for a summarization of this
dataset.
Text categorization: We use the Reuters multilingual
dataset4 [35], which is collected by sampling parts of the
Reuters RCV1 and RCV2 collections. It contains about 11K
newswire articles from 6 classes (i.e., C15, CCAT, E21, ECAT,
GCAT and M11) in 5 languages (i.e., English , French ,
German , Italian and Spanish). While each document
was also translated into the other four languages in this
dataset, we do not use the translated documents in this
work. All documents are represented by using the TF-IDF
feature.

We take Spanish as the target domain in the experiment
and use each of the other four languages as an individual
source domain. For each class, we randomly sample 100
training documents from the source domain and m train-
ing documents from the target domain, where m = 5, 10, 15
and 20. And the remaining documents in the target domain
are used as the test data, among which 3, 000 documents
are additionally sampled as the unlabeled training data in
the semi-supervised setting. Note that the method in [15]
cannot handle the original high dimensional TF-IDF fea-
tures. In order to fairly compare our HFA method [15],
for documents written in each language, we perform PCA
based on the TF-IDF features with 60% energy preserved.
We summarize this dataset in Table 2.
Sentiment Classification: We use the Cross-Lingual
Sentiment (CLS) dataset5 [36], which is an extended ver-
sion of the Multi-Domain Sentiment Dataset [2] widely
used for domain adaptation. It is collected from Amazon
and contains about 800,000 reviews of three product cat-
egories: Books, DVDs and Music, and written in four
languages: English, German, French, and Japanese. The
English reviews were sampled from the Multi-Domain
Sentiment Dataset and reviews in other languages are
crawled from Amazon. For each category and each lan-
guage, the dataset is officially partitioned into a training
set, a test set and an unlabeled set, where the training set

4. http://multilingreuters.iit.nrc.ca/ReutersMultiLingualMultiView.
htm

5. http://www.uni-weimar.de/cms/medien/webis/research/
corpora/corpus-webis-cls-10.html
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TABLE 2
Summarization of the Reuters Multilingual Dataset Including 6 Classes

and test set consist of 2,000 reviews, and the numbers of
unlabeled reviews vary from 9,000 to 170,000.

We take English as the source domain and each of the
other three languages as an individual target domain in
the experiment. We randomly sample 500 reviews from the
training set of the source domain and 100 reviews from the
training set of the target domain as the labeled data. The
test set is the official test set for each category and each
language. We also sample 1, 000 reviews from the unlabeled
set as the unlabeled target training data. Similarly as for
text categorization, we extracted the TF-IDF features and
perform PCA with 60% energy preserved. The complete
information of this dataset is summarized in Table 3.
Baselines: To evaluate our proposed methods, HFA and
SHFA, we compare them with a number of baselines under
two settings. The first setting (i.e., the supervised HDA set-
ting) is as the same as [18], in which there are sufficient
labeled source samples and a limited number of labeled tar-
get samples. As the source and target data have different
dimensions, they cannot be directly combined to train any
classifiers for the target domain. So the baseline algorithms
in this setting are listed as follows:

• SVM_T: It utilizes the labeled samples only from
the target domain to train a standard SVM classi-
fier for each category/class. This is a naive approach
without considering the information from the source
domain.

• HeMap [13]: It finds the projection matrices for a
common feature subspace as well as learns the opti-
mally projected data from both domains. We align
the samples from different domains according to
their labels. Since HeMap requires the same num-
ber of samples from the source and target domains,
we randomly select min{ns,nt} samples from each
domain for learning the subspace.

• DAMA [15]: It learns a common feature subspace
by utilizing the class labels of the source and target
training data for manifold alignment.

• ARC-t [17]: It uses the labeled training data from
both domains to learn an asymmetric transformation
metric between different feature spaces.

TABLE 3
Summarization of the Cross-Lingual Sentiment Dataset

Including 3 Categories and 2 Classes

In the second setting (i.e. the semi-supervised HDA set-
ting), we addtionally employ the unlabeled samples in the
target domain. To evaluate our SHFA, we report the results
of one more baseline, transductive SVM (T-SVM) [25], which
utilizes both the labeled data and unlabeled data to train
the classifier. Note that the labeled samples in the source
domain cannot be used in T-SVM because they have different
features with the samples in the target domain. Moreover,
all the above heterogenous domain adaptation methods [13],
[15], [17] were designed for the supervised heterogeneous
domain adaptation scenario, so it is unclear how to utilize
the unlabeled target data to learn the projection matrices or
transformation metric for these methods.

For HeMap and DAMA, after learning the projection
matrices, we apply SVM to train the final classifiers by
using the projected training data from both domains for
a given category/class. For ARC-t, we construct the ker-
nel matrix based on the learned asymmetric transformation
metric, and then SVM is also applied to train its final clas-
sifier. The RBF kernel is used for all methods with the
bandwidth parameter as the mean distance of all training
samples. As we only have a very limited number of labeled
training samples in the target domain, the cross-validation
technique cannot be effectively employed to determine the
optimal parameters. Therefore, we set the tradeoff param-
eter in SVM as the default value C = 1 for all methods.
For our HFA and SHFA methods, we empirically fix the
parameter λ as 100 in the vision application (i.e. the object
recognition) and 1 in the text applications ( i.e., document
classification and sentiment classification). And we also
empirically set the weight of unlabeled data Cu in SHFA as
10−3 for all experiments. Moreover, we additionally report
the results of our SHFA with the �p-MKL extension (see
Section 3.4) where we empirically set p = 1.5 for all the
datasets which generally achieves better results.

For other methods, we report their best results on the
test data by varying their parameters in a wide range on
each dataset. Specifically, we validate the parameters β in
HeMap (see Equation (1) in [13]), μ in DAMA (see Theorem
1 in [15]) and λ in ARC-t (see Equation (1) in [17]) from
{0.01, 0.1, 1, 10, 100}. For T-SVM, we validate the weight of
unlabeled data Cu from {0.001, 0.01, 0.1, 1} and the param-
eter s for the ramp loss from [−0.9, 0] with the step size as
0.1. For both T-SVM and our SHFA, we set the parameter δ
for the balance constraint on unlabeled samples using the
prior information.
Evaluation metric: Following [17], for each method
we measure the classification accuracy over all cate-
gories/classes on three datasets. We randomly sample the
training data for a fixed number of times (i.e., 20 for the
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TABLE 4
Means and Standard Deviations of Classification Accuracies
(%) of All Methods on the Object Dataset by Using 3 Labeled
Training Samples Per Class from the Target Domain dslr

Results in boldface are significantly better than the others, judged by the t-test with
a significance level at 0.05.

Office dataset as in [17], and 10 for the Reuters dataset and
the Cross-Lingual Sentiment dataset) and report the mean
classification accuracies of all methods over all rounds of
experiments.

4.2 Classification Results
Object recognition: We report the means and standard
deviations of classification accuracies for all methods on
the Office dataset [16] in Table 4. From the results, we have
the following observations in terms of the mean classifica-
tion accuracy. SVM_T outperforms HeMap by using only
3 labeled training samples from the target domain. The
explanation is that HeMap does not explicitly utilize the
label information of the target training data to learn the
feature mapping matrices. As a result, the learned com-
mon subspace cannot well preserve a similar data structure
as in the original feature spaces of the source and tar-
get data, which results in poor classification performances.
DAMA performs only slightly better that SVM_T, possi-
bly due to the lack of strong manifold structure on this
dataset. Both results of ARC-t implemented by ourselves
and reported in [17] are only comparable with those of
SVM_T, which shows that ARC-t is less effective for HDA
on this dataset. Our HFA outperforms the other methods
for both cases, which clearly demonstrate the effective-
ness of our proposed method for HDA by learning with
augmented features. Moreover, we also observe that it is
beneficial to additionally use unlabeled data in the target
domain to learn a more robust classifier. Specifically, when

setting the parameter p in the �p-norm regularizer of �p-
MKL as p = 1, our SHFA outperforms HFA on both cases
when amazon and webcam are used as the source domain.
When setting p = 1.5, the improvements of SHFA over HFA
are 1.2% and 1.6%, respectively. SHFA also outperforms T-
SVM which demonstrates we can train a better classifier by
learning the transformation metric H to effectively exploit
the source data in SHFA.
Text categorization: Table 5 shows the means and standard
deviations of classification accuracies for all methods on
the Reuters multilingual dataset [35] by using m = 10 and
m = 20 labeled training samples per class from the target
domain. We have the following observations in terms of
the mean classification accuracy. SVM_T still outperforms
HeMap. DAMA and ARC-t perform better than SVM_T
for most cases. Our proposed HFA method is better than
other supervised HDA methods on this dataset. For the
semi-supervised setting, T-SVM is even worse than SVM_T
although we have tuned all the parameters in a wide range.
One possible explanation is that T-SVM cannot effectively
utilize these target unlabeled data on this dataset. However,
our SHFA can effectively handle the unlabeled data in the
target domain and the performance improvements of SHFA
(p = 1.5) over HFA are 3.5%, 3.2%, 3.1%, 3.1% and 1.1%,
1.1%, 1.0%, 1.1% for these four different source domains
when m = 10 and m = 20, respectively.

We also plot the classification results of SVM_T, DAMA,
ARC-t and our methods HFA and SHFA by using dif-
ferent numbers of target training samples per class (i.e.,
m = 5, 10, 15 and 20) for each source domain in Fig. 2.
We do not report the results of HeMap, as they are much
worse than the other methods. From the results, the per-
formances of all methods increase when using a larger m.
And the two HDA methods DAMA and ARC-t generally
achieve better mean classification accuracies than SVM_T
except for the setting using English as the source domain.
Our HFA method generally outperforms all other baseline
methods according to mean classification accuracy. When
using the unlabeled data in the target domain, our SHFA
(p = 1) outperforms all existing HDA methods and the per-
formance can be further improved when setting p = 1.5.
We also observe that SHFA has large improvements over
HFA when the number of labeled data in the target domain
is very small (see m = 5 in Fig. 2). When the number of
labeled data in the target domain increases, the unlabeled

TABLE 5
Means and Standard Deviations of Classification Accuracies (%) of All Methods on the Reuters Multilingual Dataset by

Using 10 and 20 Labeled Training Samples Per Class from the Target Domain Spanish

Results in boldface are significantly better than the others, judged by the t-test with a significance level at 0.05.
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TABLE 6
Means and Standard Deviations of Classification Accuracies

(%) of All Methods on the Cross-Lingual Sentiment Dataset by
Using 100 Labeled Training Samples from the Target Domain

Results in boldface are significantly better than the others, judged by the t-test with
a significance level at 0.05.

data in the target domain is less helpful, but SHFA is still
better than HFA.
Sentiment classification: Table 6 summarizes the means
and standard deviations of classification accuracies for all
methods on the Cross-Lingual Sentiment dataset by using
m = 100 labeled training samples in the target domain.
As in each domain there are three categories (i.e., Books,
DVDs, Music), each mean accuracy in Table 6 is the mean
accuracy over three categories and ten rounds. We have
the following observations in terms of the mean classi-
fication accuracy. We observe that HeMap is worse than
SVM_T which again indicates it cannot learn good feature
mappings on this dataset. ARC-t is only comparable with
SVM_T, and DAMA outperform SVM_T for all cases. Our
HFA is better than other basline methods, except one excep-
tional case that HFA is worse than DAMA when using
Japanese as the target domain. A possible explanation is
the reviews in Japanese have good manifold correspon-
dence with that in English . However, our HFA is still
comparable with DAMA in this case. Moreover, we also
have the similar observation as on the Office dataset and
Reuters dataset, our SHFA achieves better results than HFA
by additionally exploiting the unlabeled data in the target
domain. With setting p = 1, the performance improvements
of SHFA over HFA are 3.7%, 3.6% and 3.6% when using
German , French and Japanese as the target domain,
respectively. With setting p = 1.5, the performance improve-
ments of SHFA over HFA are further increased to 4.4%,
4.7% and 4.4%, respectively.

4.3 Augmented Features v.s. Common Features
We defined two augmented feature mapping functions
ϕs(xs) = [(Pxs)′, xs′, 0′dt

]′ and ϕt(xt) = [(Qxt)′, 0′ds
, xt′]′ in (1)

by concatenating the feature representation in the learnt com-
mon subspace (referred to as common features here) with the
original features and zeros. However, our methods are also
applicable by only using the common feature representations
Pxs and Qxt for the samples from source and target domains
without using the original features and zeros. We take SHFA
when setting p = 1.5 as an example to evaluate our work by
only using the feature representation in the common space,
which is referred as SHFA_commFeat . The results on the
Reuters multilingual dataset are shown in Table 7, where we
use the same settings as described in Section 4.1. We observe
that SHFA_commFeat still outperforms the existing HDA
methods HeMap, DAMA, ARC-t, and HFA on all settings
in terms of mean accuracy, which clearly demonstrates the
effectiveness of our proposed learning scheme. Moreover,
SHFA using the augmented features are consistently bet-
ter than SHFA_commFeat in terms of mean accuracy, which
demonstrates it is beneficial to use our proposed new learning
methods with the augmented features for HDA.

4.4 Performance Variations Using Different
Parameters

We conduct experiments on the Reuters multilingual
dataset to evaluate the performance variations of our
SHFA by using different parameters (i.e., λ, p, and Cu). As
described in Section 4.1, we still use 100 labeled samples
per class from the source domain, as well as 20 labeled
samples per class and 3000 unlabeled samples from the tar-
get domain. The results of our SHFA (p = 1) and SHFA
(p = 1.5) by using the default values λ = 1 and Cu = 0.001
have been reported in Table 5. To evaluate the performance
variations, at each time we vary one parameter and set
the other parameters as the default values (i.e., λ = 1,
Cu = 0.001, and p = 1.5). The means of classification accu-
racies by varying different parameters on the four settings
are plotted in Fig. 3.

From Fig. 3, we observe that our SHFA is quite stable to
these parameters in certain ranges. Specifically, by chang-
ing λ in the range of [0.01, 100], the performances of SHFA
(p= 1.5) vary within 1% in terms of mean classification
accuracy, which are still better than these baseline methods
reported in Table 5. Also, by changing the parameter p of

Fig. 2. Classification accuracies of all methods with respect to different number of target training samples per class (i.e., m = 5, 10, 15 and 20)
on the Reuters multilingual dataset. Spanish is considered as the target domain, and in each subfigure the results are obtained by using one
language as the source domain. (a) English. (b) French. (c) German. (d) Italian.
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TABLE 7
Means and Standard Deviations of Classification Accuracies (%) of Our SHFA (p = 1.5) and

SHFA_commFeat (p = 1.5) on the Reuters Multilingual Dataset

the �p-norm in the range of {1, 1.2, 1.5, 2}, we observe that
with a larger p, SHFA can achieve better results. However,
our initial experiments show that a larger p usually leads
to a slower convergence. We empirically set p = 1.5 as the
default value in all our experiments for a good tradeoff
between the effectiveness and efficiency. Moreover, we also
evaluate our SHFA (p = 1.5) by varying Cu in the range
of [10−5, 10−1]. The parameter Cu controls the weights of
unlabeled samples. Intuitively, it should not be too large
because the inferred labels for the unlabeled samples are
not accurate, which is also supported by our experiment as
shown in Fig. 3(c). While we empirically set Cu = 10−3 in
all our experiments, we observe that SHFA (p = 1.5) using
a larger value (i.e., Cu = 10−2) can achieve better results on
this dataset. However, the performances drop dramatically
when setting it to a much larger value (say, Cu = 10−1).
Nevertheless, our SHFA is generally stable and better than
these baseline methods reported in Table 5 when setting
Cu ∈ [10−5, 10−2]. For the domain adaptation problem, it is
difficult to perform cross-validation to choose the optimal
parameters, because we usually only have a limited number
of labeled samples in the target domain. We would like to
study how to automatically decide the optimal parameters
in the future.

4.5 Time Analysis
We take the Cross-Lingual Sentiment dataset as an example
to evaluate the running time of all methods. The experi-
mental setting is as the same as described in Section 4.1.
The average per class training times of all methods are
reported in Table 8. All the experiments are performed
on a workstation with Xeon 3.33 GHz CPU and 16 GB of
RAM. From Table 8, we observe that the supervised meth-
ods (i.e., SVM_T, HeMap, DAMA, ARC-t and HFA) are
generally faster than the semi-supervised methods (i.e., T-
SVM and our SHFA), because additional unlabeled samples

are used in the semi-supervised methods. SVM_T is very
fast because it only utilizes the labeled training data from
the target domain. HeMap is fast since it only needs to
solve the eigen-decomposition problem in a very small size
due to the limited number of labeled samples in the tar-
get domain. The training time of HFA is comparable to
that of DAMA and ARC-t. For the semi-supervised meth-
ods, we observe that our SHFA (p = 1) is faster than
T-SVM, and SHFA (p = 1.5) is slower than SHFA (p = 1).
Moreover, the warm start strategy can be used to fur-
ther accelerate our SHFA , which will be studied in the
future.

5 CONCLUSION AND FUTURE WORK

We have proposed a new method called Heterogeneous
Feature Augmentation (HFA) for heterogeneous domain
adaptation. In HFA, we augment the heterogeneous fea-
tures from the source and target domains by using two
newly proposed feature mapping functions, respectively.
With the augmented features, we propose to find the two
projection matrices for the source and target data and
simultaneously learn the classifier by using the standard
SVM with the hinge loss in both linear and nonlinear cases.
Then we convert the learning problem into an MKL for-
mulation which is convex and thus the global solution
can be guaranteed. Moreover, to utilize the abundant unla-
beled data in the target domain, we further extend our
HFA method to semi-supervised HFA (SHFA). Promising
results have demonstrated the effectiveness of HFA and
SHFA on three real-world datasets for object recognition,
text classification and sentiment classification.

In the future, we will investigate how to incorporate
other kernel learning methods such as [37] into our hetero-
geneous feature augmentation framework. Another impor-
tant direction is to analyze the generalization bound for
heterogeneous domain adaptation.

Fig. 3. Performances of our SHFA using different parameters on the Reuters multilingual dataset. (a) Performances w.r.t. λ. (b) Performances w.r.t.
p in lp-norm. (c) Performance w.r.t. Cu .
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TABLE 8
Average Per Class Training Time (in Seconds) Comparisons of All

Methods on the Cross-Lingual Sentiment Dataset
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