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Abstract— In this paper, we propose a new exemplar-based
multi-view domain generalization (EMVDG) framework for
visual recognition by learning robust classifier that are able to
generalize well to arbitrary target domain based on the training
samples with multiple types of features (i.e., multi-view features).
In this framework, we aim to address two issues simultaneously.
First, the distribution of training samples (i.e., the source domain)
is often considerably different from that of testing samples
(i.e., the target domain), so the performance of the classifiers
learnt on the source domain may drop significantly on the target
domain. Moreover, the testing data are often unseen during
the training procedure. Second, when the training data are
associated with multi-view features, the recognition performance
can be further improved by exploiting the relation among
multiple types of features. To address the first issue, considering
that it has been shown that fusing multiple SVM classifiers
can enhance the domain generalization ability, we build our
EMVDG framework upon exemplar SVMs (ESVMs), in which
a set of ESVM classifiers are learnt with each one trained
based on one positive training sample and all the negative
training samples. When the source domain contains multiple
latent domains, the learnt ESVM classifiers are expected to be
grouped into multiple clusters. To address the second issue, we
propose two approaches under the EMVDG framework based
on the consensus principle and the complementary principle,
respectively. Specifically, we propose an EMVDG_CO method
by adding a co-regularizer to enforce the cluster structures of
ESVM classifiers on different views to be consistent based on
the consensus principle. Inspired by multiple kernel learning,
we also propose another EMVDG_MK method by fusing the
ESVM classifiers from different views based on the comple-
mentary principle. In addition, we further extend our EMVDG
framework to exemplar-based multi-view domain adaptation
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(EMVDA) framework when the unlabeled target domain data
are available during the training procedure. The effectiveness
of our EMVDG and EMVDA frameworks for visual recognition
is clearly demonstrated by comprehensive experiments on three
benchmark data sets.

Index Terms— Domain generalization, domain adaptation,
latent domain discovery, multi-view learning.

I. INTRODUCTION

IN THE field of visual recognition, the data distributions
of the training data and the testing data are usually quite

different, in which the training set (resp., the testing set) is
referred to as the source domain (resp., the target domain).
Recently, abundant domain adaptation approaches [1]–[14]
were proposed to reduce the data distribution mismatch
between the source domain and the target domain explicitly.
Nevertheless, the target domain samples are often unavailable
during the training procedure and this problem is named
domain generalization [15]. In comparison with domain adap-
tation, domain generalization aims to learn robust classifiers
that can generalize well to arbitrary target domain. More
recently, several domain generalization approaches [15]–[18]
were also developed to enhance the generalization capability
of the classifiers learnt on the source domain. For more details
about domain generalization and adaptation, please refer
to Section II.

Most of the existing approaches for domain generalization
or domain adaptation only utilize one type of feature in the
training and the testing stage. In fact, when the training and
testing data are associated with multiple types of features,
the recognition performance can be enhanced by exploiting
the relation among multiple types of features (see Section II
for the details). Some recently proposed domain adaptation
approaches [7], [19]–[21] are based on multiple types of fea-
tures, which aim to tackle with the data distribution mismatch
and simultaneously exploit the relation among multiple types
of features. Blitzer et al. [19] use canonical correlation analy-
sis (CCA) to learn the projection matrices, based on which the
classifiers learnt on the source domain are adapted to the target
domain. In [20], different weights are assigned to the training
samples based on the maximum mean discrepancy (MMD),
while the prediction scores obtained on multiple views are
expected to be consistent. Yang and Gao [21] incorporate
an MMD-based regularizer into the CCA framework. The
approach in [7] can be used to learn the kernel weights to cope
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with the domain distribution mismatch by treating each view
as a kernel. However, the above multi-view approaches [7],
[19]–[21] require the target domain samples in the training
stage, which are not available in the domain generalization
scenario.

To this end, we propose an exemplar-based multi-view
domain generalization (EMVDG) framework by utilizing
multi-view source domain data to learn robust classifiers,
which are able to generalize well to the arbitrary target domain.
On the one hand, our approach is inspired by the recent
work [16], which demonstrates that fusing multiple SVM
classifiers can enhance the domain generalization capability. In
particular, our EMVDG framework builds upon ESVMs [22]
with each SVM classifier learnt based on one positive training
sample together with all the negative training samples. Accord-
ing to the assumptions in [16], [23], and [24], the source
domain may contain multiple hidden latent domains. Thus, the
ESVM classifiers, which correspond to the positive samples
belonging to the same hidden latent domain, are expected to be
similar. Therefore, the ESVM classifiers can be grouped into
multiple clusters, which can be achieved by using low-rank
techniques [e.g., nuclear norm-based regularizer or low-rank
representation (LRR)].

On the other hand, in order to take full advantage of multi-
view features, we propose two methods under the EMVDG
framework based on the consensus principle and the comple-
mentary principle [25], respectively. Without loss of generality,
the consensus principle expects the information of multiple
views to be consistent while the complementary principle
assumes that each view may contain some information, which
are missing in the other views, so that multiple views can be
jointly used to make the data representation more comprehen-
sive. In this paper, for the consensus principle, we enforce the
consistency of inherent cluster structures on different views
by adding a co-regularizer, which uses LRR [26] based on the
weight vectors of ESVM classifiers. This method is named
EMVDG_CO. For the complementary principle, we linearly
combine multiple kernels on different views as in multiple ker-
nel learning (MKL) [27], and simultaneously enforce the dual
matrix, which consists of the dual vectors of ESVM classifiers,
to be low rank by adding a nuclear norm-based regularizer.
We refer to this approach as EMVDG_MK. For both methods,
alternating optimization algorithms are developed to solve the
nontrivial optimization problems.

Our major contributions of this paper can be summarized
as follows. First, we propose an effective EMVDG frame-
work including two methods EMVDG_CO and EMVDG_MK.
To the best of our knowledge, this is the first work to
explore the domain generalization problem in the multi-view
scenario. Second, we further extend our EMVDG framework
to exemplar-based multi-view domain adaptation (EMVDA)
for domain adaptation, which can utilize the unlabeled target
domain data.

This paper differs from our preliminary conference ver-
sion [28] in the following aspects. First, in [28], we only
discussed the EMVDG_CO method and its corresponding
domain adaptation method EMVDA_CO based on the con-
sensus principle, which are referred to as MVDG and MVDA

in [28], respectively. In this paper, we additionally explore the
complementary principle and propose a new EMVDG_MK
method, which leads to a more general EMVDG framework
including both EMVDG_CO and EMVDG_MK methods.
Second, we also extend our newly proposed EMVDG_MK
method to EMVDA_MK for domain adaptation in an EMVDA
framework. Third, moreover, we employ new encoding method
(i.e., Fisher vectors) instead of using bag-of-words (BOWs)
based on improved dense trajectory (IDT) descriptors to
improve the action recognition performance on the ACT42 and
online RGBD action data set (ORGBD) data sets.

II. RELATED WORK

This paper is related to the domain generalization
methods [15], [16]. In [15], the marginal distribution
mismatch between different latent domains is reduced while
the conditional distribution on each view is maintained. But
the approach proposed in [15] requires domain labels, which
may not be available in real world applications. Among the
existing domain generalization methods, our work is more
related to [16], which builds upon ESVMs [22] to explore
the low-rank structure in positive source domain samples.
However, the above approaches [15], [16] only focus on
one type of feature, while our work focuses on domain
generalization in the multi-view scenario.

This paper is also related to the latent domain discovering
methods [23], [24]. In [24], the training samples on the source
domain are clustered into different hidden latent domains.
In [23], the distribution mismatch between each pair of differ-
ent latent domains is maximized. After the latent domains are
discovered, the classifiers learnt based on each hidden latent
domain are fused, and then the integrated classifier is applied
to the testing data. However, the above methods require the
number of hidden latent domains and these methods do not
discuss how to employ multiple types of features effectively.

In this paper, our EMVDG framework is also extended to
EMVDA for domain adaptation. Therefore, we discuss some
existing domain adaptation approaches here. In general, the
domain adaptation approaches can be classified into classifier-
based approaches [5], [7], feature-based approaches [1]–[4],
and instance-reweighting methods [6]. Interested readers can
refer to [29] for more details. However, the above works
do not discuss how to utilize the source domain samples
with multi-view features. As mentioned in Section I, some
domain adaptation approaches [7], [19]–[21] can be used in
the multi-view scenario. However, their methods require the
target domain samples in the training stage, which are not
available for domain generalization.

Finally, this paper is related to the multi-view learning
approaches [27], [30]–[33]. In general, the existing multi-view
learning methods mainly rely on either the consensus principle
or the complementary principle [25]. For the consensus
principle, the approach in [30] first uses the kernel canonical
correlation analysis (KCCA) to transform the training and
testing features, and then learns SVM classifiers by using
the transformed features, while the work in [31] formulates
this two-stage approach as one unified optimization problem.
Ding and Fu [32] proposed to learn a common low-rank
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subspace among multiple types of features. For the
complementary principle, the linear combination of multiple
kernels on different types of features is used to improve the
performance in the MKL methods [27], [34]. In addition,
some multi-view semi-supervised learning approaches [35],
[36] have also been proposed. For manifold-based approaches,
a semi-supervised Laplacian regularizer is incorporated into
KCCA in [37], while the average matrix of multiple Laplacian
matrices based on multi-view features is used in a semi-
supervised learning method in [36]. In co-training, Blum and
Mitchell [35] select the confident unlabeled training samples
by utilizing the classifier learnt on one view and add these
confident samples to the labeled training set for learning the
classifier on the other view in an iterative way. For more
details about multi-view learning, please refer to the recent
survey [25]. However, all the above multi-view learning
methods assume that the data distribution of the training data
and the testing data are the same, while our frameworks do
not have this assumption.

III. EXEMPLAR-BASED MULTI-VIEW

DOMAIN GENERALIZATION

In this section, an EMVDG framework is proposed. In the
following, we first introduce domain generalization with
ESVMs briefly in Section III-A, and then introduce our two
methods under the EMVDG framework: EMVDG_CO in
Section III-B and EMVDG_MK in Section III-C.

For better presentation, we denote a matrix/vector by using
an uppercase/lowercase letter in boldface. 1n, 0n ∈ R

n are used
to denote the n-dim column vectors with the entries of all ones
and all zeros, respectively. Moreover, we use 1 and 0 to replace
1n and 0n when the dimensionality is obvious. Similarly, we
use I and O to denote the identity matrix and the matrix of
all zeros, respectively. We use the superscript ′ to denote the
transpose of a vector/matrix and A−1 to denote the inverse
matrix of A. Moreover, we represent the elementwise product
between two matrices by using A ◦ B. The inequality a ≤ b
is used to denote that ai ≤ bi for i = 1, . . . , n.

In this paper, we explore the multi-view domain general-
ization problem in the binary classification scenario. Suppose
the source domain contains n positive training samples and m
negative training samples, in which each sample is associated
with V types of features, each positive training sample can be

denoted as x+
i = (x1

i
+
, . . . , xV

i
+
), i = 1, . . . , n, and each neg-

ative training sample can be denoted as x−
j = (x1

j
−
, . . . , xV

j
−
),

j = 1, . . . ,m.

A. Domain Generalization With Exemplar SVMs

Domain generalization targets at learning robust classifiers
that are able to generalize well to the arbitrary target domain
by utilizing the source domain samples, which can be achieved
by fusing multiple SVM classifiers as discussed in Section II.
Specifically, when the source domain data are assumed to be
sampled from multiple latent domains, the latent domain labels
are given (i.e., in [15]) or obtained by using latent domain
discovering methods [23], [24]. Then, the classifiers learnt
based on each latent domain are integrated to predict the

target domain data. Since the training samples within each
latent domain are with more coherent data distribution, each
classifier corresponding to each latent domain should be more
discriminative and the integrated classifier should be more
robust to the various data distribution of the unseen target
domain.

However, in the real-world scenario, the variance of training
samples is likely to be affected by complicated hidden factors
that often overlap and interact with each other. Considering
that it is a very challenging task to explicitly discover the
hidden latent domains, low-rank ESVM (LRESVM) was pro-
posed in [16], which utilizes the low-rank structure of positive
source domain data. It is worth noting that this approach
builds upon the ESVMs [22] with each SVM classifier learnt
based on one positive source domain sample and all negative
source domain samples. ESVM targets at capturing the specific
feature of individual positive training sample, which has been
widely used in many computer vision tasks such as object
detection [22], image retrieval [38], and feature encoding [39].
By using fi (x) = w′

i x to denote the ESVM classifier learnt
based on the i th positive sample x+

i and all the negative
samples1 {x−

j |mj=1} (we only focus on single-view learning
in this section, so the superscript v is omitted for ease of
presentation), the formulation for learning n ESVMs can be
written as

min
wi ,ξi ,εi j

1

2

n∑

i=1

‖wi‖2 + C
n∑

i=1

ξi + C
n∑

i=1

m∑

j=1

εi j

s.t. wi
′x+

i ≥ 1 − ξi , ξi ≥ 0, ∀i

wi
′x−

j ≤ −1 + εi j , εi j ≥ 0, ∀i,∀ j (1)

where C is a tradeoff parameter, ξi ’s and εi j ’s are the slack
variables, and ‖wi‖2 is the regularizer to control the complex-
ity of wi .

As the positive samples belonging to the same hidden
latent domain should be similar, the work in [16] enforces
the prediction score matrix Ḡ ∈ Rn×n , in which Ḡi j is the
prediction score by using the j th ESVM classifier on the
i th positive training sample, to be low rank by employing
a nuclear norm-based regularizer. However, this approach
only considers the training data with one type of feature.
When the training data are associated with multiple types of
features, we demonstrate that it is useful to exploit the relation
among multiple types of features based on the consensus
principle in Section III-B or the complementary principle
in Section III-C.

B. Exemplar-Based Multi-View Domain Generalization
With Co-Regularizer

In this section, we propose our EMVDG_CO method by
taking advantage of multi-view features based on the consen-
sus principle, in which an ESVM classifier is learnt for each
positive sample on each view. Specifically, we use f vi (x

v ) =
wv

i
′xv to denote the ESVM classifier learnt based on xvi

+ and
{xvj −|mj=1} on the vth view. We also use Wv = [wv

1, . . . ,wv
n] to

1We do not employ the bias term explicitly. Instead, we augment each
feature vector with an extra element of 1.
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denote the weight matrix consisting of all the ESVM classifiers
learnt on the vth view.

1) Formulation: Since the positive samples belonging to the
same hidden latent domain should be similar, their correspond-
ing ESVM classifiers should also be similar to each other, and
thus the weight vectors wv

i ’s on each view can be grouped
into multiple clusters. In this paper, such a cluster structure is
exploited by utilizing the LRR [26] technique. According to
LRR [26], the weight matrix on each view can be reconstructed
by using itself as a dictionary, i.e., Wv = WvZv + Ev , in
which Zv ∈ R

n×n is the representation matrix and Ev is the
reconstruction error. Note that the representation matrix Zv

encodes the cluster structure of ESVM classifiers [26],
in which the between-cluster (resp., within-cluster) entries
of Zv are generally sparse (resp., dense).

On the one hand, in LRR, the representation matrices Zv ’s
are expected to be low rank. Moreover, by jointly learning Wv

and low-rank matrix Zv using Wv = WvZv + Ev , Wv is also
expected to be low rank when the error term Ev is close to
zero. In such a case, the weight vectors wv

i ’s corresponding
to the positive training samples belonging to the same hidden
latent domain are expected to be similar, which is consistent
with our motivation.

On the other hand, when the training data are associated
with multiple types of features, the cluster structures of Wv ’s
on different views are expected to be consistent according
to the consensus principle. Based on our LRR, in which the
cluster structure of Wv is encoded in Zv , such consistency
can be easily introduced by enforcing Zv ’s on multiple views
to be close to each other based on our new co-regularizer∑
v,ṽ:v 	=ṽ ‖Zv − Zṽ‖2

F .
To this end, we formulate our EMVDG_CO method as

min
Zv ,Wv ,Ev

ξ vi ,ε
v
i j

V∑

v=1

⎛

⎝1

2
‖Wv‖2

F + C
n∑

i=1

ξvi + C
n∑

i=1

m∑

j=1

εvi j

⎞

⎠

+
V∑

v=1

(
λ2‖Ev‖2

F + λ3‖Zv‖∗
)

+ γ

2

∑

v,ṽ:v 	=ṽ
‖Zv − Zṽ‖2

F (2)

s.t. wv
i
′xvi

+ ≥ 1 − ξvi , ξvi ≥ 0, ∀v,∀i (3)

wv
i
′xvj

− ≤ −1 + εvi j , εvi j ≥ 0, ∀v,∀i,∀ j (4)

Wv = WvZv + Ev , ∀v (5)

where ξvi , εvi j are the slack variables, ‖Wv‖2
F is the regularizer

for controlling the complexity of ESVM classifiers, and C , λ2,
λ3, and γ are the tradeoff parameters. The nuclear norm-based
regularizer ‖Zv‖∗ is used to enforce Zv to be low rank, and the
regularizer ‖Ev‖2

F is employed to enforce the reconstruction
error Ev to approach zeros.

2) Optimization: For better optimizing the problem in (2),
an intermediate variable Gv is introduced for each Wv . Instead
of employing LRR on Wv as in (2), we employ LRR on
Gv while enforcing Gv to be close to Wv by adding the
regularizer ‖Wv −Gv‖2

F . In particular, we reach the following

formulation:

min
Zv ,Wv ,Gv

Ev ,ξ vi ,ε
v
i j

V∑

v=1

⎛

⎝1

2
‖Wv‖2

F + C
n∑

i=1

ξvi + C
n∑

i=1

m∑

j=1

εvi j

⎞

⎠

+
V∑

v=1

(
λ1‖Wv − Gv‖2

F + λ2‖Ev‖2
F + λ3‖Zv‖∗

)

+ γ

2

∑

v,ṽ:v 	=ṽ
‖Zv − Zṽ‖2

F (6)

s.t. wv
i
′xvi

+ ≥ 1 − ξvi , ξvi ≥ 0, ∀v,∀i (7)

wv
i
′xvj

− ≤ −1 + εvi j , εvi j ≥ 0, ∀v,∀i,∀ j (8)

Gv = GvZv + Ev , ∀v (9)

in which λ1 is a tradeoff parameter. It is obvious that the
problem in (6) can reduce to the problem in (2) when λ1
approaches +∞. The problem in (6) can be solved by an alter-
native approach, in which two sets of variables {Zv ,Ev } and
{Wv ,Gv , ξvi , ε

v
i j } are updated alternatively until the objective

value of (6) converges.
a) Update Zv and Ev : When Wv , Gv , ξvi , and εvi j are

fixed, the problem in (6) becomes the following problem:

min
Zv ,Ev

V∑

v=1

(
λ2‖Ev‖2

F + λ3‖Zv‖∗
) + γ

2

∑

v,ṽ:v 	=ṽ
‖Zv − Zṽ‖2

F

(10)

s.t. Gv = GvZv + Ev , ∀v (11)

which can be solved by utilizing the inexact augmented
Lagrange multiplier (ALM) method [40]. In particular, we
introduce the auxiliary variable Pv (resp., Qv ) to replace Zv

in ‖Zv‖∗ [resp., Zv in the constraint (11)], and arrive at the
augmented Lagrangian function as

L =
V∑

v=1

(
λ2‖Ev‖2

F + λ3‖Pv‖∗
) + γ

2

∑

v,ṽ:v 	=ṽ
‖Zv − Zṽ‖2

F

+
V∑

v=1

〈Sv ,Zv − Pv〉 +
V∑

v=1

〈Tv ,Zv − Qv〉

+
V∑

v=1

〈Rv ,Gv − GvQv − Ev 〉 + μ

2

V∑

v=1

‖Zv − Pv‖2
F

+μ
2

V∑

v=1

‖Zv − Qv‖2
F + μ

2

V∑

v=1

‖Gv − GvQv − Ev‖2
F

(12)

where μ > 0 is a penalty parameter, and Sv , Tv , and Rv

are the Lagrangian multipliers. The objective function in (12)
can be minimized by using the inexact ALM approach, i.e.,
updating the variables {Pv,Qv ,Zv ,Ev}’s, the Lagrangian
multipliers {Sv ,Tv ,Rv}’s, and the penalty parameter μ in
the augmented Lagrangian function (12) iteratively until the
termination criterion is met. In the following, we will describe
how to update Pv , Qv , Zv , and Ev when fixing other variables
one by one while the methods for updating Sv , Tv , Rv , and μ
are trivial and can be directly found in Algorithm 1.
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When fixing the other variables, the subproblem for updat-
ing {Pv |Vv=1} is independent with respect to each Pv , so we
solve each Pv separately. After omitting and adding some
constants, we reach the objective function with respect to Pv

in (22), which can be solved by employing the singular value
thresholding (SVT) algorithm [41].

When fixing the other variables, the subproblem for
updating {Qv |Vv=1} is independent with respect to each Qv ,
so we solve each Qv separately. By setting the derivative of
the subproblem with respect to Qv to zeros, we can easily
obtain the solution to Qv as in (23).

When fixing the other variables, the subproblem for updat-
ing {Zv |Vv=1} can be rewritten as (24) after omitting the
terms without Zv s and using Hv to replace (1/2)(Pv + Qv −
(1/μ)(Sv + Tv )), which has a close-form solution based on
the vectorization of Zv .

When fixing the other variables, the subproblem for updat-
ing {Ev |Vv=1} is independent with respect to each Ev , so we
solve each Ev separately. By setting the derivative of the
subproblem with respect to Ev to zeros, the solution to Ev

can be easily obtained as in (25). The steps to solve (12) are
summarized in Algorithm 1.

b) Update Wv , Gv , ξvi , εvi j : When fixing Zv , we
equivalently replace Ev by Gv−GvZv and rewrite the problem
in (6) as

min
Wv ,Gv

ξ vi ,ε
v
i j

V∑

v=1

⎛

⎝1

2
‖Wv‖2

F + C
n∑

i=1

ξvi + C
n∑

i=1

m∑

j=1

εvi j

+λ1‖Wv − Gv‖2
F + λ2‖Gv−GvZv‖2

F

⎞

⎠ (13)

s.t. wv
i
′xvi

+ ≥ 1 − ξvi , ξvi ≥ 0, ∀v,∀i, (14)

wv
i
′xvj

− ≤ −1 + εvi j , εvi j ≥ 0, ∀v,∀i,∀ j. (15)

It can be observed that the above problem contains V
independent subproblems corresponding to V views. So we
solve each subproblem by alternatively updating two sets of
variables {Wv , ξvi , εvi j } and Gv until the objective value of (13)
converges. In particular, when fixing Gv , the problem with
respect to Wv , ξvi , and εvi j can be separated into n independent
subproblems with each related to one ESVM classifier. Thus,
we have the following subproblem with respect to the i th
ESVM classifier:

min
wvi ,ξ

v
i ,ε

v
i j

1

2
‖wv

i ‖2+C

⎛

⎝ξvi +
m∑

j=1

εvi j

⎞

⎠+λ1‖wv
i −gvi ‖2 (16)

s.t. wv
i
′xvi

+ ≥ 1 − ξvi , ξvi ≥ 0 (17)

wv
i
′xvj

− ≤ −1 + εvi j , εvi j ≥ 0, ∀ j (18)

where gvi is the i th column vector of Gv . We introduce the
dual variables {α̂+, β̂+} and {α̂−

j , β̂−
j }’s for the constraints

in (17) and (18), respectively, and obtain the dual form
of (16) as

min
α̂

α̂′ Kv
i ◦ (yy′)

2(1 + 2λ1)
α̂ +

[
2λ1(Xv ′

i gvi ) ◦ y

1 + 2λ1
− 1

]′
α̂

s.t. 0 ≤ α̂ ≤ C1 (19)

Algorithm 1 Solving (12) With Inexact ALM
1: Input: Gv, λ2, λ3, γ
2: Initialize Zv = Ev = Sv = Tv = Rv = O, ρ = 0.1,
μ = 0.1, μmax = 106, ν = 10−5, Niter = 106.

3: for t = 1 : Niter do
4: For v = 1, . . . , V , update Pv by solving

Pv = arg min
Pv
λ3‖Pv‖∗ + μ

2
‖Pv − (Zv + Sv

μ
)‖2

F . (22)

5: For v = 1, . . . , V , update Qv by

Qv = (I + Gv ′Gv)−1(Gv ′(Gv − Ev + Rv

μ
)+ Zv + Tv

μ
).

(23)

6: For v = 1, . . . , V , update Zv by solving

min
Zv

γ

2

∑

v,ṽ:v 	=ṽ
‖Zv − Zṽ‖2

F +
V∑

v=1

μ‖Zv − Hv‖2
F , (24)

where Hv = 1
2 (P

v + Qv − 1
μ(S

v + Tv )).
7: For v = 1, . . . , V , update Ev by

Ev = μ(Gv − GvQv )+ Rv

2λ2 + μ
. (25)

8: For v = 1, . . . , V , update Sv , Tv , and Rv by

Sv = Sv + μ(Zv − Pv), (26)

Tv = Tv + μ(Zv − Qv ), (27)

Rv = Rv + μ(Gv − GvQv − Ev ). (28)

9: Update the parameter μ by μ = min(μmax , (1 + ρ)μ).
10: Break if ‖Gv − GvQv − Ev‖∞ < ν, ‖Zv − Pv‖∞ < ν,

‖Zv − Qv‖∞ < ν, ∀v.
11: end for
12: Output: Zv .

where Xv
i = [xvi +, xv1

−, . . . , xvm
−], Kv

i = Xv ′
i Xv

i , α̂ = [α̂+,
α̂−

1 , . . . , α̂
−
m ]′, and y = [1,−1m

′]′. The problem in (19) is
a quadratic programming (QP) problem, which can be solved
efficiently by using the SMO algorithm [42], i.e., updating one
selected dual variable in each iteration. With obtained α̂, wv

i
can be recovered by using the following equation:

wv
i = 1

1 + 2λ1
(2λ1gvi + Xv

i (y ◦ α̂)). (20)

When Wv , ξvi , and εvi j are fixed, we have a closed-form
solution for updating Gv . In particular, by setting the derivative
of (13) with respect to Gv to zeros, we can easily obtain the
updating equation of Gv as

Gv = λ1Wv
(
λ2(I − Zv )(I − Zv )′ + λ1I

)−1
. (21)

The whole algorithm is listed in Algorithm 2.
During the testing procedure, inspired by the prediction

method in [16], given a test sample, we average the higher
prediction scores of this sample obtained by using the exem-
plar classifiers on each view. By representing each test sample
as u = (u1, . . . ,uV ) with uv being the vth view feature,
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Algorithm 2 Exemplar-Based Multi-View Domain General-
ization With Co-Regularizer

Input: Training data {xvi +|ni=1} and {xvj −|m
j=1

} with V views.

1: Initialize2 Gv ’s.
2: repeat
3: Use Algorithm 1 to update Zv ’s.
4: repeat
5: Solve n independent subproblems in the dual form (19)

and then recover Wv using (20) on each view.
6: Update Gv by using (21) on each view.
7: until The objective function of (13) converges.
8: until The objective function of (6) converges.

Output: The learnt classifier Wv ’s.

we formulate the final prediction score of u as

f (u) = 1

V

V∑

v=1

1

|
(uv )|
∑

i:i∈
(uv )
f vi (u

v ) (29)

where f vi (u
v ) is the prediction score of uv by using the i th

ESVM classifier wv
i , and 
(uv ) is the index set of ESVM

classifiers, which obtain the top prediction scores on uv .
Following [16], the cardinality of 
(uv ) (i.e., |
(uv )|) is set
as 5 in our experiments. By using this prediction method, we
conjecture that this test sample is predicted by the ESVM
classifiers learnt based on the positive training samples, which
may come from the most relevant hidden latent domain.
Consequently, the integrated classifier f (u) in (29) is expected
to generalize well to the arbitrary target domain.

C. Exemplar-Based Multi-View Domain
Generalization Based on MKL

Inspired by MKL [27], in this section, we propose our
EMVDG_MK approach by exploiting multi-view features
based on the complementary principle. Specifically, in our
multi-view scenario, multiple types of features may have
complementary information, and thus it is beneficial to fuse the
classifiers learnt on different views. By treating each view as
a kernel, our problem can be considered as an MKL problem.

1) Formulation: Inspired by [27], we first write the primal
form of MKL based on hard-margin3 SVM with V -view
features as

min
d,w

V∑

v=1

‖wv‖2

dv
(30)

s.t. ỹi

V∑

v=1

wv ′
xvi ≥ 1, ∀i

1′d = 1, d ≥ 0 (31)

2We initialize Gv by using the weight vector of the exemplar classifier
learnt based on the ith positive sample and all the negative samples on the
vth view as its ith column vector.

3Our formulation can be similarly derived when using soft-margin SVM.
Here, we use parameter-free hard-margin SVM for simplicity. Moreover, we
do not employ the bias term explicitly. Instead, we augment each feature
vector with an extra element of 1.

where d = [d1, . . . , dV ]′, ỹi is the label of the i th training
sample, xvi is the vth type of feature of the i th training sample,
and wv is the SVM classifier on the vth view. From (30), we
can observe that the SVM classifiers wvs on different views
are integrated based on the complementary principle.

By introducing dual variables αi s for the constraints in (31)
and setting the derivative of the Lagrangian form with respect
to each wv to zeros, we can easily obtain the following
equation:

wv = dvXv (α ◦ ỹ), ∀v (32)

where Xv = [xv1, . . . , xvñ] with ñ being the number of
training samples, α = [α1, . . . , αñ]′, and ỹ = [ỹ1, . . . , ỹñ]′.
By substituting (32) back into the Lagrangian form of (30),
we can obtain the dual form of (30) as the following min-max
optimization problem:

min
d

max
α

− 1

2

V∑

v=1

dvα
′(Kv ◦ (ỹỹ′))α + 1′α

s.t. α ≥ 0

1′d = 1, d ≥ 0 (33)

where Kv = Xv ′
Xv is the kernel matrix on the vth view. From

the dual form in (33), we can observe that multiple kernels on
different views are linearly combined with the coefficient d
based on the complementary principle.

In (32), the ESVM classifiers on different views of the same
positive sample share the same dual vector α, so we have in
total n dual vectors, each of which corresponds to one positive
sample. By using αi to denote the dual vector of the ESVM
classifiers corresponding to the i th positive training sample,
we can formulate our MKL problem with V views as

min
d

max
αi

− 1

2

n∑

i=1

V∑

v=1

dvα
′
i M

v
i αi +

n∑

i=1

1′αi

s.t. αi ≥ 0, ∀i

1′d = 1, d ≥ 0 (34)

in which d is the same as defined in the paragraph below (30)
and Mv

i = Kv
i ◦(yy′) with y and Kv

i being the same as defined
in the paragraph below (19).

Recall that the positive training samples are likely to come
from multiple hidden latent domains. When the j th positive
training sample and the kth training sample come from
the same latent domain, Xv

j and Xv
k should be similar, and

the weight vectors of their corresponding ESVM classifiers
(i.e., wv

j and wv
k ) should also be similar, as discussed in

Section III-B. Moreover, similar to (32), we can easily derive
that wv

i = dvXv
i (αi ◦ y), based on which we can infer that

the dual vectors α j and αk should be similar when wv
j is

similar to wv
k and Xv

j is similar to Xv
k . Based on the above

discussions, the dual vectors αi ’s can be organized into
multiple hidden clusters. By denoting the dual matrix as
A = [α1, . . . ,αn ] ∈ R(m+1)×n , we add a nuclear norm-based
regularizer ‖A‖∗ to (34) to enforce A to be low rank, and



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

NIU et al.: EMVDG FRAMEWORK FOR VISUAL RECOGNITION 7

arrive at our final formulation

min
d

max
A

− 1

2

n∑

i=1

V∑

v=1

dvα
′
i M

v
i αi +

n∑

i=1

1′αi − ζ‖A‖∗

s.t. αi ≥ 0, ∀i

1′d = 1, d ≥ 0 (35)

in which ζ is a tradeoff parameter.
2) Optimization: The problem in (35) is not easy to be

optimized due to the regularizer ‖A‖∗, so we introduce an
intermediate variable B and apply the low-rank regularizer on
B instead of A and enforce B to be close to A. Then, we reach
the following formulation:

min
d

max
A,B

− 1

2

n∑

i=1

V∑

v=1

dvα
′
i M

v
i αi +

n∑

i=1

1′αi

− ζ1‖B‖∗ − ζ2

2
‖A − B‖2

F

s.t. αi ≥ 0, ∀i

1′d = 1, d ≥ 0 (36)

in which ζ1 and ζ2 are two tradeoff parameters. It is obvi-
ous that the problem in (36) can reduce to the problem
in (35) when ζ2 approaches +∞. Since the objective function
in (36) is concave with respect to B and convex with respect
to d, mind and maxB can be exchanged [43]. Then, we can
rewrite (36) as

max
B

min
d

max
A

− 1

2

n∑

i=1

V∑

v=1

dvα
′
i M

v
i αi +

n∑

i=1

1′αi

−ζ1‖B‖∗ − ζ2

2
‖A − B‖2

F

s.t. αi ≥ 0, ∀i

1′d = 1, d ≥ 0. (37)

Note that the inner problem of (37) with respect to d
and A can be reformulated as a convex problem, and will
be discussed in the proof of Proposition 1. Therefore, we
solve (37) by using an alternating optimization approach.
In particular, we alternatively update two sets of variables B
and {A,d} until the objective of (37) converges.

a) Update B: When fixing A and d, the problem in (37)
reduces to the following problem:

min
B
ζ1‖B‖∗ + ζ2

2
‖A − B‖2

F (38)

which can be solved by employing the SVT algorithm [41].
b) Update A, d: When fixing B, the problem in (37) can

reduce to the following problem:

min
d

max
αi

− 1

2

n∑

i=1

V∑

v=1

dvα
′
i M

v
i αi +

n∑

i=1

1′αi

− ζ2

2

n∑

i=1

‖αi − βi‖2

s.t. αi ≥ 0, ∀i

1′d = 1, d ≥ 0 (39)

in which βi is the i th column of B.

Interestingly, the primal form of (39) is closely related to the
primal form of MKL in (30), which is described as follows.

Proposition 1: The primal form of (39) can be written as

min
d,wvi
ξ̃i ,ε̃i j

1

2

n∑

i=1

V∑

v=1

‖wv
i ‖2

dv
+ 1

2ζ2

⎛

⎝
n∑

i=1

ξ̃2
i +

n∑

i=1

m∑

j=1

ε̃2
i j

⎞

⎠

(40)

s.t.
V∑

v=1

wv ′
i xvi

+ ≥ (1 + ζ2β
+
i )− ξ̃i , ∀i (41)

V∑

v=1

wv ′
i xvj

− ≤ −(1 + ζ2β
−
i j )+ ε̃i j , ∀i,∀ j (42)

1′d = 1, d ≥ 0 (43)

where β+
i ’s and β−

i j ’s are newly introduced variables,

and ξ̃i ’s and ε̃i j ’s are the slack variables.
Proof: We prove that the dual form of (40) can be equiv-

alently written as (39). After introducing the dual variables
α+

i ’s for the constraints in (41) and α−
i j ’s for the constraints

in (42), we arrive at the Lagrangian form of (40) as

Lw = 1

2

n∑

i=1

V∑

v=1

‖wv
i ‖2

dv
+ 1

2ζ2

⎛

⎝
n∑

i=1

ξ̃2
i +

n∑

i=1

m∑

j=1

ε̃2
i j

⎞

⎠

−
n∑

i=1

α+
i

(
V∑

v=1

wv ′
i xvi

+ − 1 − ζ2β
+
i + ξ̃i

)

+
n∑

i=1

m∑

j=1

α−
i j

(
V∑

v=1

wv ′
i xvj

− + 1 + ζ2β
−
i j − ε̃i j

)
. (44)

By setting the derivatives of Lw with respect to ξ̃i , ε̃i j , and
wv

i to zeros separately, we obtain ξ̃i = ζ2α
+
i , ε̃i j = ζ2α

−
i j , and

the following equation:
wv

i = dvXv
i (αi ◦ y) (45)

in which Xv
i and y are the same as defined in the paragraph

below (19), and αi = [α+
i , α

−
i1, . . . , α

−
im ]′ corresponds to the

dual vector in (39). By substituting (45) back into (44), we
can obtain the dual form of (40) as

min
d

max
αi

− 1

2

n∑

i=1

V∑

v=1

dvα
′
i M

v
i αi +

n∑

i=1

(1 + ζ2βi )
′αi

− ζ2

2

n∑

i=1

‖αi‖2

s.t. αi ≥ 0, ∀i
1′d = 1, d ≥ 0 (46)

where βi = [β+
i , β

−
i1, . . . , β

−
im ]′ corresponds to βi in (39).

After adding a constant term −(ζ2/2)
∑n

i=1 ‖βi ‖2 in (46)
followed by some simplifications, we can arrive at the exact
form of (39). Therefore, we complete the proof here.

The problem in (40) is jointly convex with respect to d,
wv

i ’s, ξ̃i ’s, and ε̃i j ’s, so the global optimum can be achieved by
using an alternative optimization approach. Specifically, when
d is fixed, we solve αi in the dual form in (39) and then recover
wv

i by using (45). The subproblems with respect to each αi are
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Algorithm 3 Exemplar-Based Multi-View Domain General-
ization Based on MKL
Input: Training data {xvi +|ni=1} and {xvj −|m

j=1
} with V views.

1: Initialize4 A, d = 1
V 1.

2: repeat
3: Update B’s by solving the problem in (38).
4: repeat
5: Update αi ’s by solving n independent subproblems in

the inner problem of (39) and then recover wv
i ’s by

using (45) on each view.
6: Update d by using (47).
7: until The objective function of (39) converges.
8: until The objective function of (37) converges.

Output: The learnt classifier Wv ’s.

independent to each subproblem being a QP problem, which
can be solved efficiently by using the SMO algorithm [42].
When wv

i ’s are fixed, we introduce a dual variable τ for
the constraint 1′d = 1 in (43) and set the derivative of the
Lagrangian form with respect to dv to zero, which leads to
dv = ((

∑n
i=1 ‖wv

i ‖2)/(2τ ))1/2. Considering 1′d = 1 and the
equation in (45), we can easily obtain the closed-form solution
for dv as

dv =
√∑n

i=1 ‖wv
i ‖2

∑V
v=1

√∑n
i=1 ‖wv

i ‖2
=

√∑n
i=1 d2

vα
′
i M

v
i αi

∑V
v=1

√∑n
i=1 d2

vα
′
i M

v
i αi

.

(47)

The whole algorithm of EMVDG_MK is listed in
Algorithm 3. In the testing stage, we use the same prediction
method as for EMVDG_CO [see (29)] in Section III-B.

IV. EXTENDING OUR EMVDG FRAMEWORK

FOR DOMAIN ADAPTATION

When we have unlabeled target domain samples in the
training stage, our EMVDG framework can be extended to
EMVDA by utilizing the unlabeled data for domain adaptation.
Specifically, we further add a Laplacian regularizer, such that
the prediction scores of target domain samples obtained by
using the learnt ESVM classifiers should satisfy the smooth-
ness constraint. This regularizer has proved to be effective for
domain adaptation [44]. To be exact, when two target domain
samples are similar, their prediction scores obtained by using
the same set of SVM classifiers should be close to each other.
We extend our EMVDG_CO and EMVDG_MK methods to
EMVDA_CO and EMVDA_MK, respectively.

A. Exemplar-Based Multi-View Domain Adaptation
With Co-Regularizer

We add a Laplacian regularizer to the objective function
of our EMVDG_CO method [i.e., (6)] and formulate the

4We initialize A with its i th column vector being the dual vector of exemplar
classifiers learnt based on the averaged kernel from V views, which are
obtained based on the ith positive sample and all the negative samples.

objective function of our EMVDA_CO approach as

min
Zv ,Wv ,Gv

Ev ,ξ vi ,ε
v
i j

V∑

v=1

⎛

⎝1

2
‖Wv‖2

F + C
n∑

i=1

ξvi + C
n∑

i=1

m∑

j=1

εvi j

+ λ1‖Wv − Gv‖2
F + λ2‖Ev‖2

F + λ3‖Zv‖∗

)

+ γ

2

∑

v,ṽ:v 	=ṽ
‖Zv − Zṽ‖2

F + θ

V∑

v=1

�(Wv,Lv ,Uv )

(48)

s.t. wv
i
′xvi

+ ≥ 1 − ξvi , ξvi ≥ 0, ∀v,∀i (49)
wv

i
′xvj

− ≤ −1 + εvi j , εvi j ≥ 0, ∀v,∀i,∀ j (50)
Gv = GvZv + Ev , ∀v (51)

where θ is a tradeoff parameter, �(Wv,Lv ,Uv ) =
tr(Wv ′UvLvUv ′Wv ) is the Laplacian regularizer, in which
Uv = [uv1, . . . ,uvN ] is the target domain samples with N being
the total number of unlabeled target domain samples and uvi
being the vth type of feature of the i th target domain sample,
and Lv is the Laplacian matrix constructed based on the target
domain samples on the vth view. Note that we use the nearest
neighbor graph to construct the Laplacian matrices Lv s based
on cosine similarity as suggested in [45].

We can solve the problem in (48) similar to that for solv-
ing (6). The only difference lies in that when updating Wv on
the vth view, compared with (16), the subproblem with respect
to the i th exemplar classifier has an additional Laplacian
regularizer, which is written as

min
wvi ,ξ

v
i ,ε

v
i j

1

2
‖wv

i ‖2 + C

⎛

⎝ξvi +
m∑

j=1

εvi j

⎞

⎠ + λ1‖wv
i − gvi ‖2

+ θwv
i
′UvLvUv ′wv

i (52)
s.t. wv

i
′xvi

+ ≥ 1 − ξvi , ξvi ≥ 0 (53)
wv

i
′xvj

− ≤ −1 + εvi j , εvi j ≥ 0, ∀ j (54)

which can also be solved in the dual form by using the SMO
algorithm [42].

B. Exemplar-Based Multi-View Domain
Adaptation Based on MKL

Similar to Section IV-A, we also add a Laplacian regular-
izer to the objective function of our EMVDG_MK method
[i.e., (35)]. Recall that wv

i = dvXv
i (αi ◦ y) [see (45)], so

we can derive the Laplacian regularizer �(Wv ,Lv ,Uv ) =
tr(Wv ′UvLvUv ′Wv ) = d2

v

∑n
i=1 α′

i (X
v ′
i UvLvUv ′

Xv
i ◦ (yy′))αi .

Similar to the regularizer ‖wv
i ‖2 in (40), we assign the weight

(1)/(dv) to the Laplacian regularizer on the vth view. After
denoting K̂v

i = Xv ′
i Uv and adding the weighted Laplacian

regularizer to (35), we formulate our EMVDA_MK method as

min
d

max
A

− 1

2

n∑

i=1

V∑

v=1

dvα
′
i M

v
i αi +

n∑

i=1

1′αi − ζ‖A‖∗

− ϑ

2

n∑

i=1

V∑

v=1

dvα
′
i

(
K̂v

i Lv K̂v ′
i ◦ (yy′)

)
αi

s.t. αi ≥ 0, ∀i

1′d = 1, d ≥ 0 (55)
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where ϑ is a tradeoff parameter. After denoting
M̂v

i = (Kv
i + ϑK̂v

i Lv K̂v ′
i ) ◦ (yy′), we can simplify (55) as

min
d

max
A

− 1

2

n∑

i=1

V∑

v=1

dvα
′
i M̂

v
i αi +

n∑

i=1

1′αi − ζ‖A‖∗

s.t. αi ≥ 0, ∀i

1′d = 1, d ≥ 0 (56)

which shares a similar form with (35) except that we replace
Mv

i by M̂v
i . So the algorithm for solving (56) is similar

to that for solving (35). The only difference lies in that
when fixing B and updating {A,d}, the primal form of the
subproblem can be written as

min
d,wvi
ξ̃i ,ε̃i j

1

2

n∑

i=1

V∑

v=1

‖wv
i ‖2

dv
+ 1

2ζ2

⎛

⎝
n∑

i=1

ξ̃2
i +

n∑

i=1

m∑

j=1

ε̃2
i j

⎞

⎠

s.t.
V∑

v=1

wv ′
i ψ

(
xvi

+) ≥ (
1 + ζ2β

+
i

) − ξ̃i , ∀i

V∑

v=1

wv ′
i ψ

(
xvj

−) ≤ −(
1 + ζ2β

−
i j

) + ε̃i j , ∀i,∀ j

1′d = 1, d ≥ 0 (57)

where ψ(·) is the feature mapping function induced by the
kernel (Kv

i +ϑK̂v
i Lv K̂v ′

i ). The problem in (57) shares a similar
form with (40) except that we apply the feature mapping
function ψ(·) on xv+i ’s and xv−j ’s. Therefore, when updating A

(resp., d), we replace Mv
i in (39) [resp., (47)] by M̂v

i .

V. EXPERIMENTS

In this section, the effectiveness of our EMVDG and
EMVDA frameworks for human action recognition and object
recognition is demonstrated by extensive experiments on three
benchmark data sets. In particular, we show that our EMVDG
(resp., EMVDA) framework outperforms all the state-of-the-
art baselines in Section V-A (resp., Section V-B). We also
provide the insightful analysis on why our two methods under
the EMVDG framework are effective. Moreover, we take
the Office-Caltech data set as an example to show that the
performance can be further improved by using more types of
features in Section V-C.

A. Domain Generalization

1) Experimental Settings: All methods are evaluated for the
human action recognition task on two benchmark data sets:
ACT42 [46] and ORGBD [47].

The ACT42 data set consists of 2648 RGB-D videos from
14 action categories, which are captured from four camera
viewpoints. As suggested in [46], the samples captured from
each camera viewpoint are treated as one domain. Then, the
videos from two domains and the remaining two domains
are merged as the source domain and the target domain,
respectively, which leads to in total six settings.

The ORGBD [47] contains the RGB-D videos from seven
action categories. This data set has three sets with each

set containing 112 videos, in which Set 3 is captured in
one environment, while Set 1 and Set 2 are captured in
another environment. In order to evaluate all methods for
cross-environment human action recognition, two sets cap-
tured in different environments are merged as the source
domain and the remaining one is treated as the target domain.
Thus, we have a total of two settings, that is, Set 1 and 3
(resp., Set 2 and 3) for training and Set 2 (resp., Set 1) for
testing.

For human action recognition on the ACT42 and ORGBD
data sets, two types of features (i.e., RGB and depth) are used
in the experiments. In particular, for each pair of RGB and
depth videos in both ACT42 and ORGBD data sets, we extract
the IDT descriptors [48]. Compared with the preliminary
conference version of this paper [28], we use the Fisher
vector encoding method instead of BOW to encode the IDT
descriptors. Specifically, following [2], we train 256 Gaussian
mixture models based on the IDT descriptors from the training
videos, and then extract a 109 056-dim Fisher vector for each
training and testing video. Finally, we perform PCA to reduce
the dimension of Fisher vectors to 10 000.

Moreover, all methods are also evaluated for the object
recognition task on the benchmark data set Office-Caltech [2].
The images in the Office-Caltech data set are from four
domains, that is, Caltech-256 (C), Amazon (A), Webcam (W),
and Digital SLR (D). Following the experimental setting in [2],
the ten common categories among the four domains are used,
which consists of a total of 2533 images. As suggested in
[16] and [23], we mix D and W (resp., C, D, and W; A and C)
as the source domain and the remaining domains are used as
the target domain, which leads to three experimental settings
in total. For each image, we extract the 4096-dim DeCAF6
feature [49] and the 4096-dim Caffe6 [50] feature as two-view
features.

2) Baselines: We compare EMVDG_CO and EMVDG_MK
methods with two basic baselines, i.e., SVM [51] and
ESVM (ESVM) [22], as well as three sets of baseline methods:
the multi-view learning approaches, the domain generalization
approaches, and the latent domain discovering approaches.
For SVM, the classifiers are trained on each view, and then,
we fuse the prediction scores from two views for the final
prediction. For ESVM, one ESVM classifier is trained for each
positive training sample on each view, and then, we use the
same prediction method as in (29).

The multi-view learning baseline methods contain
SVM-2K [31], KCCA [30], low-rank common
subspace (LRCS) [32], and MKL [27] by utilizing two types
of features, i.e., RGB/DeCAF6 features and depth/Caffe6
features.

The domain generalization baseline methods include
LRESVM [16] and domain-invariant component analy-
sis (DICA) [15]. Under the multi-view setting, LRESVM and
DICA are employed on each view, and then, we fuse the
prediction scores from multiple views.

The latent domain discovering methods contain
[23] and [24]. We learn the SVM classifiers for each
discovered latent domain, followed by employing two
prediction strategies named “ensemble” and “match” as
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TABLE I

AVERAGE ACCURACIES (%) OVER MULTIPLE SETTINGS OF
DIFFERENT APPROACHES ON EACH DATA SET WITHOUT

USING THE TARGET DOMAIN SAMPLES DURING

THE TRAINING PROCEDURE. WE DENOTE THE

BEST RESULTS IN BOLDFACE

in [16]. Similar to latent domains discovering algorithms,
subcategorization methods aim at discovering subcategories
within each category, which can also be applied to our task.
Therefore, we include the discriminative subcategorization
(Sub-Cate) method [52] as a baseline. For all the above
methods, we employ them on each view, and then average
the prediction scores from two views.

Moreover, in order to validate the co-regularizer in (2), we
additionally report the results of a simplified version of our
EMVDG_CO method, which is named EMVDG_CO_sim, in
which the co-regularizer

∑
v,ṽ:v 	=ṽ ‖Zv − Zṽ‖2

F is removed by
setting γ to 0.

For performance evaluation, the recognition accuracy is
used for all approaches. For our EMVDG_CO method, the
parameters are empirically fixed as C = 0.1, λ1 = 100,
λ2 = 10, λ3 = 0.1, and γ = 100 for all settings on all
data sets. For our EMVDG_MK method, the parameters are
empirically fixed as ζ1 = 10, ζ2 = 10000 for all settings
on all data sets. For the baselines, the optimal parameters are
chosen based on their best performance on the testing set. Due
to the space limitation, only the average accuracy over the
3 (resp., 6, 2) settings for the Office-Caltech (resp., ACT42,
ORGBD) data set is reported.

3) Results: We summarize the experimental results in
Table I, from which we observe that ESVM outperforms SVM,
which indicates the effectiveness of fusing multiple ESVM
classifiers to enhance the domain generalization ability.

Multi-view learning approaches LRCS, SVM-2K, KCCA,
and MKL achieve better results than SVM, because they
exploit the relation among multiple types of features.
LRESVM, DICA, and Sub-Cate are all better than SVM,
which indicates that it is useful to exploit the intrinsic structure
when the training data are sampled from multiple latent
domains. The latent domain discovering approaches [23], [24]
using the “match” or “ensemble” strategy generally outperform
SVM, which shows the effectiveness of discovering the latent
domains.

Fig. 1. Illustration of the learnt representation matrices Zv s on two views
for the action “Put On” on the ACT42 data set when treating the camera
viewpoint 1 and 4 (resp., 2 and 3) as the source (resp., target) domain.
(a) ZRGB without co-reg. (b) Zdepth without co-reg. (c) ZRGB with co-reg.
(d) Zdepth with co-reg.

Another observation is that EMVDG_CO_sim is better than
ESVM on all data sets. Since ESVM can be treated as a special
case of our EMVDG_CO_sim method without employing
LRR, the results indicate the benefits of exploiting the low-
rank structure of positive training samples for domain gen-
eralization. Our EMVDG_CO method achieves better results
than its simplified version EMVDG_CO_sim, which shows
that our new co-regularizer

∑
v,ṽ:v 	=ṽ ‖Zv − Zṽ‖2

F is effective.
Therefore, it is useful to jointly exploit the cluster structures
from multiple views.

Our EMVDG_CO and EMVDG_MK methods outperform
all the baseline methods on all three data sets, which indicates
that our EMVDG framework can improve the domain general-
ization ability and utilize multiple types of features effectively.
Note that there is no consistent winner in our EMVDG frame-
work. In particular, our EMVDG_CO method achieves the best
result on the ACT42 data set, while our EMVDG_MK method
outperforms EMVDG_CO on the ORGBD data set and
achieves the comparable result on the Office-Caltech data set.

4) Analysis on the Learnt Representation Matrices Using
EMVDG_CO_sim and EMVDG_CO: In order to demonstrate
how our EMVDG_CO method exploits the latent domains
of positive training samples in an intuitive way, we take
the ACT42 data set as an example to compare the rep-
resentation matrices Zv s (i.e., ZRGB and Zdepth) learnt by
using our EMVDG_CO method and its simplified version
EMVDG_CO_sim in Fig. 1, which correspond to MVDG
and MVDG (without co-reg) in the preliminary conference
version respectively. Recall that the representation matrix Zv

encodes the cluster structure of exemplar classifiers, in which
the between-cluster (resp., within-cluster) entries are generally
sparse (resp., dense). Therefore, in ideal cases, Zv should be
block-diagonal with each block representing a latent domain.
From Fig. 1, we observe that all four representation matrices
exhibit block-diagonal structure, which indicates that it is
effective to discover hidden latent domains by employing
LRR on each view. It is worth noting that although only two
domains (i.e., camera viewpoint 1 and camera viewpoint 4)
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Fig. 2. Illustration of the kernel combination weights and the accuracies of
SVM based on each kernel corresponding to RGB and depth features on the
two settings on the ORGBD data set.

are merged as the source domain, there are in fact four
blocks in Fig. 1, which means that totally four latent domains
are discovered. We conjecture that actors are likely to put
on clothes from two opposite directions with each direction
leading to a latent domain. Thus, the videos captured from
each camera viewpoint actually contain two latent domains.
Another observation is that with our newly proposed co-
regularizer, the two representation matrices learnt by using
our EMVDG_CO method are more consistent and also exhibit
relatively clearer block-diagonal structure than those learnt by
using the simplified version EMVDG_CO_sim. This result
demonstrates the benefits of using our co-regularizer. We have
similar observations for the other scenarios.

5) Analysis on the Learnt Kernel Weights Using
EMVDG_MK: From Table I, we observe that our
EMVDG_MK method outperforms our EMVDG_CO
method on the ORGBD data set, which could be explained
as follows. Since two types of features (i.e., RGB and depth)
are used on the ORGBD data set, we conjecture that one
of them (i.e., RGB or depth) is more discriminative, so that
assigning higher weight for more discriminative features will
help better exploit the latent domain structure and learn more
robust classifiers, which leads to better performance. To this
end, we analyze the learnt kernel weights d in (35) by taking
the two settings on the ORGBD data set as examples.

To capture the relation between the kernels constructed
from different types of features and the learnt kernel weights,
we additionally report the accuracies of SVM by using only
RGB or depth features. When the performance of SVM
obtained based on one feature is higher than the other one,
the corresponding kernel is expected to be more discriminative
and the weight assigned to this kernel is expected to be
higher. With regards to the kernel weights, we have a set
of learnt kernel combination weights for each category, as
our EMVDG_MK method is under the binary classification
setting. For better representation, we report the average of
the learnt kernel weights over all categories. To this end,
we illustrate the accuracies of SVM and the learnt kernel
weights in Fig. 2, from which we observe that the SVM
classifiers trained based on the RGB features achieve better
performance on both settings. Moreover, higher weights are
correctly assigned to the RGB kernel by EMVDG_MK on both
settings, which demonstrates that our EMVDG_MK method
can select more discriminative kernels.

B. Domain Adaptation

1) Experimental Settings: We use the same experimental
settings as in Section V-A except that we additionally

use the unlabeled target domain data in the training
process.

2) Baselines: We compare our EMVDA framework, includ-
ing EMVDA_CO and EMVDA_MK methods, with three sets
of baseline methods: the domain adaptation approaches and
the multi-view semi-supervised learning approaches as well
as the existing multi-view domain adaptation approaches.

The domain adaptation baselines are kernel mean match-
ing (KMM) [6], domain adaptive SVM (DASVM) [5],
domain-invariant projection (DIP) [3], subspace align-
ment (SA) [4], transfer component analysis (TCA) [53],
sampling geodesic flow (SGF) [1], and geodesic flow ker-
nel (GFK) [2]. The above domain adaptation approaches are
employed on each view, followed by fusing the prediction
scores from two views using the late fusion strategy.

Our EMVDA framework is also compared with multi-
view semi-supervised learning approaches Co-LapSVM [36]
and Co-training [35], together with the multi-view domain
adaptation approaches including multi-view transfer learning
(MVTL_LM) [20], Coupled [19], multi-view discriminant
transfer (MDT) [21], and domain transfer multiple kernel
learning (DTMKL) [7], which exploit the relation among
multiple types of features and simultaneously cope with
the domain distribution mismatch. In addition, we com-
pare our EMVDA framework with LRCS [32] by using
the target domain samples as the dictionary as suggested
in [32].

Compared with EMVDG_CO, our EMVDA_CO method
has an extra parameter θ , which is empirically set as 10−5

for all settings on all data sets. Similarly, compared with
EMVDG_MK, our EMVDA_MK method has an extra para-
meter ϑ , which is empirically set as 10−7 for all settings on all
data sets. For the baselines, the optimal parameters are chosen
based on their best results on the testing set. Due to the space
limitation, only the average accuracy over the three (resp., 6, 2)
settings for the Office-Caltech (resp., ACT42, ORGBD) data
set is reported.

3) Results: We summarize the experimental results in
Table II. The results of SVM from Table I are also included
for comparison. It can be observed that the domain adaptation
approaches DASVM, KMM, SA, DIP, GFK, TCA, and SGF
outperform SVM, which indicates the advantage of reducing
the domain distribution mismatch between the source domain
and the target domain.

We also observe that the multi-view semi-supervised
learning approaches Co-LapSVM and Co-training as well
as the multi-view domain adaptation approaches Coupled,
MVTL_LM, MDT, and DTMKL are generally better than
the multi-view learning approaches reported in Table I, which
demonstrates the effectiveness of utilizing the unlabeled target
domain samples. Another observation is that the multi-view
domain adaptation approaches are generally better than or
comparable with other domain adaptation approaches, which
shows the advantage of additionally exploiting the relation
among multiple views. LRCS also achieves better results by
using the target domain data as the dictionary, when compared
with its corresponding results without using the target domain
data.
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TABLE II

AVERAGE ACCURACIES (%) OVER MULTIPLE SETTINGS OF DIFFERENT
APPROACHES ON EACH DATA SET AFTER UTILIZING THE TARGET

DOMAIN SAMPLES DURING THE TRAINING PROCEDURE. THE

BEST RESULTS ARE DENOTED IN BOLDFACE

Our EMVDA_CO (resp., EMVDA_MK) method out-
performs our EMVDG_CO (resp., EMVDG_MK) method
reported in Table I, which indicates the benefits of utilizing
the unlabeled target domain data during the training procedure.
Moreover, our EMVDA_CO and EMVDA_MK methods out-
perform all the baselines on all data sets. Our EMVDA_CO
method achieves the best results on the ACT42 and Office-
Caltech data set, while our EMVDA_MK achieves the best
result on the ORGBD data set.

C. Utilizing Multiple Types of Features

Although we only use two types of features (i.e., RGB/depth
features for human action recognition and Decaf6/Caffe6 for
object recognition) in Sections V-A and V-B, our EMVDG
and EMVDA frameworks can be readily used for multiple
types of features. When employing more types of features,
our EMVDG_MK and EMVDA_MK methods are much more
efficient than our EMVDG_CO and EMVDA_CO methods,
which can be explained as follows. For our EMVDG_CO
method, we need to update Wvs and Gvs on each view as
indicated in Algorithm 2, and update Zv s by solving the
subproblems on each view as indicated in Algorithm 1. So the
training time of our EMVDG_CO method increases linearly
with the number of views. In contrast, for our EMVDG_MK
method, the most time-consuming steps are to solve the
problem in (38) and the inner problem of (39), and their time
complexity is irrelevant to the number of views, as indicated in
Algorithm 3. So the extra training time of our EMVDG_MK
method with multiple types of features is much less than
that of EMVDG_CO. The analysis of the time complexity
for EMVDA_CO and EMVDA_MK is similar to that for
EMVDG_CO and EMVDG_MK, respectively.

To compare EMVDG_MK (resp., EMVDA_MK) with
EMVDG_CO (resp., EMVDA_CO) in terms of the train-
ing time and accuracy when using different numbers of
views, we take the Office-Caltech data set as an exam-
ple to conduct experiments on a server machine with Intel

TABLE III

AVERAGE TRAINING TIME (s) OF OUR EMVDG AND EMVDA
FRAMEWORKS ON THE OFFICE-CALTECH DATA SET BY

EMPLOYING TWO-VIEW OR FOUR-VIEW FEATURES

TABLE IV

AVERAGE ACCURACIES (%) OF OUR EMVDG AND EMVDA
FRAMEWORKS ON THE OFFICE-CALTECH DATA SET BY

EMPLOYING TWO-VIEW OR FOUR-VIEW FEATURES

Xeon 3.2-GHz CPUs and 16-GB RAM using a single thread.
Besides the Decaf6 and Caffe6 features, we additionally use
Decaf7 and Caffe7 features, which leads to four types of
features in total. The average training time over three settings
of our four methods is reported in Table III, from which
we can observe that the training time of EMVDG_CO and
EMVDA_CO approximately increases linearly as the number
of views increases while the training time of EMVDG_MK
and EMVDA_MK increases much less. We also report the
average accuracies over three settings of our four methods in
Table IV, from which we observe that the performances of all
four methods are improved after employing two more types
of features. When using four types of features, EMVDG_CO
(resp., EMVDA_CO) achieves better result than EMVDG_MK
(resp., EMVDA_MK). However, our EMVDG_MK and
EMVDA_MK methods are much more efficient.

VI. CONCLUSION

In this paper, an EMVDG framework has been proposed for
visual recognition. Our framework can enhance the domain
generalization capability to the arbitrary target domain and
simultaneously exploit the relation among multiple types of
features. Moreover, our EMVDG framework has been fur-
ther extended to a new domain adaptation framework named
EMVDA by additionally using the unlabeled target domain
samples in the training process. The effectiveness of our
EMVDG and EMVDA frameworks has been demonstrated by
extensive experiments for visual recognition on three bench-
mark data sets.
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