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Weakly Supervised Domain Generalization

Li Niu, Wen Li, Dong Xu, Senior Member, IEEE, and Jianfei Cai, Senior Member, IEEE

Abstract—1In this paper, a weakly supervised domain
generalization (WSDG) method is proposed for real-world visual
recognition tasks, in which we train classifiers by using Web data
(e.g., Web images and Web videos) with noisy labels. In particular,
two challenging problems need to be solved when learning robust
classifiers, in which the first issue is to cope with the label
noise of training Web data from the source domain, while the
second issue is to enhance the generalization capability of learned
classifiers to an arbitrary target domain. In order to handle
the first problem, the training samples within each category are
partitioned into clusters, where we use one bag to denote each
cluster and instances to denote the samples in each cluster. Then,
we identify a proportion of good training samples in each bag and
train robust classifiers by using the good training samples, which
leads to a multi-instance learning (MIL) problem. In order to
handle the second problem, we assume that the training samples
possibly form a set of hidden domains, with each hidden domain
associated with a distinctive data distribution. Then, for each
category and each hidden latent domain, we propose to learn
one classifier by extending our MIL formulation, which leads
to our WSDG approach. In the testing stage, our approach can
obtain better generalization capability by effectively integrating
multiple classifiers from different latent domains in each category.
Moreover, our WSDG approach is further extended to utilize
additional textual descriptions associated with Web data as
privileged information (PI), although testing data do not have
such PI. Extensive experiments on three benchmark data sets
indicate that our newly proposed methods are effective for
real-world visual recognition tasks by learning from Web data.

Index Terms—Domain generalization, learning using
privileged information (LUPI), multi-instance learning (MIL).

I. INTRODUCTION

HE research interest on utilizing Web images/videos as
the training data to recognize new images/videos grows
rapidly in recent years. Nevertheless, as mentioned in [1],
the data distributions of training and testing samples are
most likely to be different, which leads to the data set bias
problem [1]. In order to tackle this issue, researchers have
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proposed abundant domain adaptation approaches for different
computer vision tasks [2]-[11].

We follow the terminology in the field of domain adaptation,
that is, the training and testing data sets are referred to as
the source and target domains, respectively. In the case that
the target domain data are unseen in the training stage, the
problem is called domain generalization. Compared with
domain adaptation, domain generalization targets at learning
robust classifiers that have excellent generalization ability to
an arbitrary target domain [12]-[15], which is very important
in the real-world visual recognition tasks. For instance,
different data sets consisting of photos/videos captured by
different users with different cameras can be treated as
different target domains, which have different visual feature
distributions. Due to privacy issues, some users may be
reluctant to upload their photos/videos to public websites,
and thus, we are lacking of data from some target domains.
In such case, it is crucial to develop the effective approaches
for domain generalization, which do not require the target
domain data during the training stage.

In this paper, the domain generalization problem is explored
by utilizing freely available source domain data (i.e., Web
images/videos). In particular, a novel method called weakly
supervised domain generalization (WSDG) is developed in
Section III. Two important issues are considered: 1) Web
images/videos are often associated with inaccurate labels,
i.e., they are loosely labeled and 2) the data distributions
between the source domain and the target domain are usually
quite different. Moreover, during the training stage, the target
domain data are generally unseen.

To tackle the inaccurate labels of training images/videos,
the training samples within each category are first partitioned
into clusters. We use one bag to denote each cluster and
instances to denote the samples in each cluster. We only have
the labels of each training bags, but the instance labels in
each training bag are unknown. Inspired by the multi-instance
learning (MIL) works, we use a proportion of good samples
selected from a bag to represent the bag under the assumption
that the training bags from different categories can be well
distinguished. We then unify learning robust classifiers and
selecting good training samples for each bag in a multiclass
multi-instance formulation.

On the other hand, inspired by the recent works [14], [16],
[17], we conjecture that the training Web samples possibly
form a set of hidden latent domains, each of which has
a different data distribution. Thus, we apply the existing
technology to discover multiple latent domains and then,
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Flowchart of our visual recognition methods. The flowchart consists of an approach to discover the latent domains, which learns the probabilities

that each training sample comes from each latent domain, and a classification method WSDG/WSDG-PI, which learns one classifier for each category and
each hidden latent domain. For our WSDG method, only the visual features are required as the input, while for our WSDG-PI method, the visual features

together with the textual features are required as the input.

learn one classifier for each category and each latent domain.
Since the training samples for learning classifiers for each
category and each latent domain are relatively more coherent,
the integrated classifier obtained by fusing multiple classifiers
from all categories is more robust to various data distributions.
As a result, we expect that the integrated classifier will have
good generalization ability to an arbitrary target domain.
Note that for each training bag, we just use a proportion
of training samples to learn the classifiers, and thus, we
propose to identify the training instances that have more
distinctive data distributions by using a maximum mean discre-
pancy (MMD)-based regularizer.

In the testing stage, for each testing sample, we select the
classifier corresponding to the highest response among all
the classifiers from different latent domains in each category,
which can be intuitively explained as we select the most
matched latent domain for each testing sample. As a result,
the data distribution mismatch between training samples and
testing samples can be reduced.

In addition, the Web data are usually accompanied
by additional textual information (e.g., tags, descriptions,
and captions), which can be used as privileged infor-
mation (PI) [9], [18], though these textual features are not
available for the testing data. In Section IV, our WSDG
method is extended by utilizing such PI, which is referred
to as WSDG-PI. The flowchart of our WSDG and WSDG-PI
methods is shown in Fig. 1. In Section V, the extensive
experimental results clearly show the effectiveness of our
approaches.

Our major contributions can be summarized as follows.

1) To the best of our knowledge, this paper is the first one
to explore the domain generalization problem under the
weakly supervised learning setting.

2) An effective WSDG approach is developed for domain
generalization.

3) Our WSDG approach is further extended to WSDG-PI
by utilizing PI (i.e., additional textual descriptions).

We would like to point out that this paper is extended from our
preliminary conference paper [19] with the following major
differences. First, we provide the detailed formulation and
solution for WSDG-PI (see Section IV), in which textual
features are utilized as PI. In addition, in Section V-B, we
conduct more experiments to analyze why removing outliers
in our WSDG method helps learn a better classifier and
discover more distinctive latent domains. We also perform the

in-depth study for our methods, such as the robustness with
respect to parameters, the training time, and the scalability in
Sections V-D, V-E, and V-F, respectively. Finally, in order
to improve the event recognition performance, we employ
the new features and use the aligned space-time pyramid
matching (ASTPM) method to better calculate the distances
between video clips on the Kodak and Columbia Consumer
Video (CCV) data sets.

II. RELATED WORK

MIL is in the sense that we partition the training
samples into clusters and use bag (resp., instances) to
denote each cluster (resp., the samples in each bag).
A set of MIL approaches were developed in [20]-[22].
In multi-instance (mi-SVM) [21], the support vector
machine (SVM) classifier is trained at each iteration based
on the inferred instance labels from the previous iteration. In
key-instance (KI-SVM) [22], the key instances inside each bag
are used as the representatives of the bag. Nevertheless, these
methods were proposed without taking the data distribution
mismatch between two domains into consideration, so that
the learned classifiers may not generalize well to the arbitrary
target domain.

Domain generalization is another relevant research topic.
For domain generalization, a domain invariant feature
representation was learned in [13], while an SVM-based
approach was proposed in [12]. Xu et al. [14] exploited
the low-rank structure of source latent domains based on
exemplar classifiers. When we have target domain data in
the training process, domain adaptation approaches can be
used to reduce the domain distribution mismatch. The recently
developed domain adaptation approaches can be classified into
classifier-based methods [7], [8], [23], instance-reweighting
methods [24], and feature-based methods [6], [25]-[28]. Some
works [29]-[32] applied low-rank techniques for domain
adaptation. In particular, the transformed source domain
samples are expected to be linearly constructed by the target
domain samples in [30]. In [31], both the source and target
domain data are projected to the common subspace, where
each target domain sample can be linearly constructed by the
source domain samples. Ding et al. [32] proposed an iterative
approach, in which the transformed source domain is treated
as the dictionary to reconstruct the transformed data from both
domains at each iteration. Ding et al. [29] proposed to recover
the missing modality in the target domain under a transfer
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learning framework. For more technical details, please refer
to a recent survey on domain adaptation [33].

This paper is also related to several recent approaches,
which can discover latent domains [14], [16], [17], [34].
In these works, latent domains are discovered based on a
clustering approach (i.e., [16]), the MMD criterion (i.e., [17]),
or mutual information (i.e., [34]). After discovering the latent
domains, these works train an SVM classifier or K-nearest
neighbor classifier for each hidden latent domain, and then,
all the classifiers learned for different latent domains are
integrated to predict the testing samples. Unlike the above
works, we jointly learn multiple classifiers for all latent
domains and categories, which can be effectively integrated
in a unified formulation.

The subcategorization problem [35] is also related to
our work, since each category often consists of multiple
subcategories. Recently, some works were proposed to
integrate MIL with subcategorization [36]-[38]. Nevertheless,
the domain distribution mismatch between the training data
and the testing data was not considered in these works, which
is quite different from the domain generalization problem
discussed in this paper.

Finally, learning using PI (LUPI) [18] is also related to
our work. In the LUPI paradigm, the training samples are
associated with additional features that are not available for
the testing data, which are referred to as PI. In some recent
works [9], [39]-[41], PI was exploited for different computer
vision tasks. In [39], a rank SVM method was proposed
to rank Web images based on PIL. In [40] and [41], PT was
incorporated into distance metric learning. However, these
works assume that the training data and the testing data are
with the same data distribution, while this assumption does
not hold in our setting. In [9], a new method was proposed to
simultaneously handle label noise, take advantage of PI, and
reduce the domain distribution mismatch. However, the target
domain data are required in [9], while they are assumed to
be unseen in this paper.

III. WEAKLY SUPERVISED DOMAIN GENERALIZATION

In this section, a novel WSDG approach is proposed,
which simultaneously identifies good samples and learns
robust classifiers. For consistent presentation, we always
use an uppercase/lowercase letter in boldface to represent a
matrix/vector, and the superscript ’ to represent the transpose
of a matrix/vector. We denote the elementwise product
between two matrices by A o B, and 1, (resp., 0,) € R” as
the n-dimensional column vectors containing all ones (resp.,
zeros). When the dimensionality is obvious, we use 0/1 instead
of 0,/1, for simplicity. The inequality a < b stands for
a; < b; fori =1,...,n. Moreover, we denote the indicator
function as d(a = b), in which d(a = b) = 0 if a # b, and
o0(a = b) = 1, otherwise.

Assuming that there are N training samples from C
categories in the source domain, the source domain data
are denoted by {(x1,y1),..., Xy, yn)}, where Xx; is the
i-th training sample, with its corresponding category label
yi € {1,...,C}.

Next, we first provide a brief introduction on how to
discover latent domains using the existing technology [17].
Then, we develop a multiclass MIL approach without
considering the latent domain issues. Last, we integrate the
latent domain discovery technique into our multiclass MIL
formulation.

A. Discovering Latent Domains

In this paper, the existing latent domain discovering
technique in [17] is adopted, which relies on the MMD
criterion. We use ; ,, € {0, 1} to indicate whether each sample
belongs to each latent domain. In particular, 7;,, = 1 if x;
comes from the m-th latent domain, and =;, = 0 otherwise.
We denote N, = ZlNz | @i,m as the number of training samples
from the m-th hidden latent domain. The approach in [17] aims
to maximize the sum of MMDs (SMMDs) between each pair
of latent domains and expects the discovered latent domains
to be as distinctive as possible, that is

2
N N
1 1
max E —n E 7Ti,m¢(xi)——Nn~1 E ”i,rh‘f)(xi)
i=1 i=1

i m#£m
where ¢ (-) is the feature mapping function, which is induced
by a kernel K € RV*V on the training data (i.e., K = [K; ;]
with K,',j ¢(X,)/¢(Xj)) Let ,B,',m = (ﬂi,m/Nm) and
Bn = [Bims--->PBn.m], we can relax the above problem
according to [17] as
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where the first constraint in (3) is to guarantee that at least
one training sample is selected in each hidden latent domain
per category, the second constraint in (4) is to ensure that
the class distribution in the whole source domain is consistent
with that in each hidden latent domain, and the third constraint
in (5) can be easily obtained based on the definitions of
Pim and 7; . Interested readers can refer to [17] for more
technical details. Note that the above quadratic programming
problem is nonconvex, which is not easy to be optimized.
However, we can still utilize the existing solver in [42] to
achieve satisfactory performance.

After latent domains are discovered by optimizing the
objective function in (2), one classifier is learned for each
category and each hidden latent domain. Then, a set of
classifiers for each category are integrated based on the learned
Bi.m’s. Next, we develop a novel multiclass MIL formulation
to cope with the label noise, followed by extending our
proposed formulation with the learned p;,’s to improve
the generalization capability of the learnt classifiers to any
arbitrary target domain.
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B. Formulation

1) Learning With Weakly Supervised Information: In MIL,
training samples are partitioned into a set of bags with explicit
bag labels, while the accurate labels of training instances in
each bag are unknown. Inspired by MIL, the training samples
within each category in our case are partitioned into training
bags, i.e., {(B;, Y7)|l =1, ..., L}. As the training samples are
obtained by using category names as searching queries, the
bag label Y; € {1,...,C} is the corresponding query name.
Similar to [20], each positive bag is assumed to have at least a
certain portion of true positive instances. Thus, we use the ratio
n to denote the proportion of true positive training instances
in each bag. Note that # can be estimated from some prior
knowledge, similar to the conventional MIL methods.

To learn robust classifiers, we select good samples from
each training bag by removing the outliers with inaccurate
class labels. In particular, we use a binary indicator h; € {0, 1}
to indicate whether each training sample x; is selected. To be
exact, h; = 0 if x; is not selected, and h; = 1, otherwise.
We define h = [hy, ..., hy] as the indicator vector, and use
‘H = {h| Ziel; hi = n|B;|, Vl} to represent the feasible set of
h, where I; represents the set of instance indices in B;, and
|B;| denotes the cardinality of B;.

Based on multiclass SVM [43], we propose our
multiclass MIL formulation as follows. In particular,
C classifiers {f.(X)|c = 1,...C} are to be learned, where
each classifier! can be represented as f.(x) = (W.)'¢(X).
Inspired by the MIL learning method KI-SVM [22] as well
as multiclass SVM [43], we propose to jointly learn h and C
classifiers as

1 S L
min = > wel* +C1 > & ©)
We, &l c=1 =1
1
s.t. B Zh,- ((wy) p(xi) — (Wa) P (xi))
i€l
&>0, VI, (8)

where C7 is a tradeoff parameter, and &;’s are slack variables.
We enforce the total decision value of each bag B; obtained
based on the classifier corresponding to its category to be
larger than those obtained by using the classifiers for the other
categories by using the constraint in (7). Intuitively, we expect
to identify good instances within each training bag to reduce
the bag-level loss.

Note that multiclass SVM [43] is a special case of the
problem in (6) with the bag size |B;| being 1. Besides,
when there are two categories, (6) becomes the MIL learning
problem in KI-SVM [22] with slight modifications.

2) Weakly Supervised Domain Generalization: Now,
considering that the training samples in the source domain
come from M latent domains, we propose to enhance
the generalization capability of the learned classifiers by
integrating the classifiers from all latent domains for each
category.

IWe omit the bias term here for better representation. Instead, the feature
of each training sample is augmented with an extra element of 1.
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To be exact, a total of, C x M classifiers {fcn(X)|c =
1,...C,andm = 1,...,M} are to be learned, where
Sem(X) = (We.m) @ (x) represents the classifier corresponding
to the m-th hidden latent domain and the c-th category. Then,
we can obtain the decision function on x; for each category by
integrating the learned classifiers from multiple latent domains
as fo(x;) = Z,A,:lzl ﬁAi,m Sfen (Xi), where /;’i,m is the probability
that the i-th training sample comes from the m-th hidden latent
domain. ﬁA,-,m is defined as ,BA’,-,m = (,b’,-,,,l/z‘ff:1 Bi.m), where
Bi.m’s are precomputed by solving (2). In summary, we expect
to learn C x M classifiers to make the integrated classifier
fe(x;)’s as discriminative as possible.

Note that the latent domain discovery technique in [17] was
proposed for clean training data without label noise. To deal
with the training data with noisy labels, while maximizing
(2), we need to seek for an optimal h value to remove outliers.
With B = [B1, ..., Bu] € RV*M the objective function in (2)
can be written as p(B,K) =2, ., (Bn — Bn) K(Bn — Bi).
In order to learn an optimal h value, we add a regularizer
p(B, Ko (hh')) and derive the complete objective function of
our proposed WSDG approach as

1 cC M L
52 2 Iweml®+C1 > 4
=1

min
he™H
We.m &l c=1 m=1
—C2p(B,Ko (hh')) )
1 - N / /
st 7 2 hi > BimWym) P (i) — (We i) b (%)
! iel; m=1
>n—4¢&, VYl,m,c#Y (10)
& =0, Vi, (11)

where C, is a tradeoff parameter. The explanation for the
constraint (10) is similar to that for (7) except that we
replace (Wy,)'¢p(x;) in (7) with 30| fim (Wy,.m)'¢(x;) and
(W) ¢ (xi) with (we ;7)' ¢ (xi).

Essentially, we train one classifier for each category and
each hidden latent domain. This is mainly because the data
distributions of the training samples from one category and one
hidden latent domain are generally more similar [17], which
is easier for us to learn a discriminant classifier. In the testing
stage, given a testing sample x, we predict its label by

arg max (m”allx Wen' @ (x)). (12)

Namely, for each category, we attempt to seek for the most
matched hidden latent domain for a given testing sample,
whose classifier achieves the largest decision value from all the
latent domains. In this way, we conjecture that the integrated
classifiers have good generalization ability to the testing data
from the arbitrary target domain.

C. Optimization

The nonconvex mixed integer problem in (9) is nontrivial
to solve. According to some recent works on MIL [20], [22],
the dual form of (9) can be relaxed as a multiple kernel
learning (MKL) problem, which shares a similar solution as
that in [44]. Next, we introduce how to relax the dual form
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of (9) and, then, discuss how to solve the relaxed problem in
detail.

1) Reformulation in Dual Form:

Proposition 1: The dual form of (9) is

1
minmax — —o'Q" + ¢'a — C2 p(B, K o (hh))
heH « 2
S.t. Zaljc,m = Cl) Vl’
c,m

al,c,m 2 09 Vl, c,m (13)

where & € R? is a vector containing dual variables a; ¢ m,
D=L-C- M, ¢ € RP is a vector, in which each entry
Cem=0if c =Y, apd Clem =1 otherwise. Each element
in the matrix Q" € RP*P can be obtained based on Qlu‘ju =
A/1BIBY) 2icz 2 jez; hihjd (xi)' ¢ X))y i, js ¢, & m, i),
v=>0(-1)-C-M+@E—-1)M+mandu=(~1I—-1)-C-M+
(c—1)- M 4+ m are the indices, and y (i, j,c,¢c,m,m) =
[1—d(c = y)Ill = 6@ = y)IS(Gyi = y)) Sty BigBig +
S(c = &d(m = )] — [1 — o = UL - 5(c = y)ld(c =
Yyi)Bjm + [1 — o€ = yj)I6(€ = yi)Bim} The proof of
Proposition 1 can be found in the Appendix.

The problem in (13) is a mixed integer programming
problem, which is difficult to be solved. Inspired by [20]
and [22], we use an alternating optimization approach to
find the optimal combination coefficients of h;h}’s given
all feasible h, € M, ie, >y d/h/h) with d; being the
combination the indicator vector h. For ease of presentation,
we denote T = |H|, d = [di,...,dr], the feasible set of
das D = {dd1 1,d > 0}, and the feasible set of «
in (13) as A. Then, we arrive at the following optimization
problem:

min max

T
1 1 (yhy /
deD ac A —EZdﬂXQ “tia
t=1

T
—C2 > dip(B.Ko (h/h))).

t=1

(14)

Note that we move the sum operator over d; outside Q" and
p (B, Ko (h;h))), since both of them are linear terms of h/h;.
The above problem is similar to the MKL dual form when we
treat each base kernel as th. Therefore, we can solve it based
on its following primal form, which is a convex optimization
problem:

T
. 1 llw:
min —Z
deD.wi.& 2= 4,

L
+C1 Y&
=1
T

—C2 > dip(B. Ko (h/h))

t=1

112

5)

T
st. > Wiy, Bre,m) > Gem — &, Yle,m (16)

=1
where y (h;, B;, ¢, m) is used to denote the feature mapping
induced by Q™, ie., w(h, B, c,m) w(hy, B, &) = Oy,
in which o = (—-1)-C- M+ (-1 -M+ m,

u=0U—-1)-C-M+(c—1)-M+ m. In the following,
we prove that the dual form of (15) is (14).

Proof: By introducing a dual variable a;.,, for each
constraint in (16), we can write the Lagrangian form of (15)
as

Iwe I

1 T
2 Z‘ d;
- Z Al c,m

l,c,m

idtp(B, Ko (h/h))

t=1

L =

L
+C1 Y §-C
1=1

T
(Z woy(hy, By, c,m) = Clem + fz)

t=1

a7

By setting the derivatives of £ with respect to w; and & as
zeros, respectively, we obtain

Wy = dl‘ Z al,c,m V/(hfa Bl’ c, m)a Vla

Lce,m

> trem = Ci, VL.
c,m

Finally, by substituting (18) and (19) back into (15), we reach
the objective function in (14), which completes the proof.
2) Solution to (15): We solve the convex problem in (15)
by updating d and {w;, &} in an alternative way.
a) Update d: When fixing {w;, &}, in order to solve d,
we introduce a dual variable 7 for the constraint d'1 = 1 and
derive the Lagrangian form of (15) as

(18)

19)

llw:

1 I 2 L T
5; " +C1§§1—C2§d,p(B,Ko(h,h;))

T
- z Al,.c,m (Z W;W(ht, B, c, m) — Clem + 51)

l,c,m t=1

+ T(IZ::d,—l).

By setting the derivative of (20) with respect to each d; to
zero, we have

L’i:

(20)

2
= GpBKo M), V=1 @
1
which can be rewritten as
d; e Vi=1,...T. (22)

2t —2C:p(B.Ko (h))

Since the function on the right-hand side of (22) is
monotonically decreasing with respect to 7 and d'1 = 1, we
first apply binary search to seek for the value 7, which satisfies
the constraint Zthl d; = 1, and then recover d;’s based on
(22).

b) Update w;: When d is fixed, & can be solved in
the dual form (14) and w; can be recovered by using (18).
In particular, we can solve the problem in (14), which is a
quadratic programming (QP) problem with respect to «, by
employing quadratic programming solvers. Nevertheless, it is
very time-consuming to use the existing QP solvers, which
are not specifically designed for our problem with L - C - M



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Algorithm 1 WSDG Algorithm

Input: The training data {(B;, Y;)|- =1}
1: Initialize = 1 and® C = {hy}.
2: repeat

3 Sett «—t+1.

4:  Based on ‘H = C, obtain (d, &) by optimizing the MKL
subproblem in (14).

5:  Solving (26) to find the violated h;, which is added to
the violation set (i.e., C < C [J hy).

6: until The objective of (14) converges.

Output: The learnt classifier f(x).

variables. Thus, we solve this QP problem by using an efficient
sequential minimal optimization (SMO) algorithm, based on
[45] and [46].

3) Cutting-Plane Algorithm: When using the above
alternating optimization algorithm, the major challenge is that
there are too many base kernels. Inspired by the work on
infinite kernel learning [47], we begin with a small number
of base kernels and then add a new violating base kernel at
each iteration iteratively, which is named as the cutting-plane
algorithm. The MKL subproblem we need to solve at each
iteration only has a small set of h, so it becomes much more
efficient to optimize the whole problem. In particular, we
replace p (B, Ko (h;h))) in (20) equivalently by using h;Ph;
with P = 3, Ko (Bn — Bi)(Bu — Bi)))- By setting the
derivatives of (20) with respect to {w;, &, d;} as zeros, we can
rewrite (14) as:

max —74+¢a (23)
e A
1

t Eoc’Qh’oz + ChPh, <7, Vi, (24)

which has a large number of constraints.

To solve (23), we begin with only one constraint and add
a new violated constraint at each iteration. In particular, since
each constraint is related to an h;, the most violated constraint
can be obtained by optimizing

1
max 5o/Qhoc + C>h'Ph. (25)
After simple derivation, (25) can be rewritten as
14
max h' (EQ o (aa’) + C2P) (26)

where @ € RV is the shrinked vector of o« with its
element a; = 1/|B)] Zc,m aje,m for each i € 7Z;, and
Q € R¥*VN is the shrinked matrix of Q with its element
Qij = 2cemm? (s j>c,¢,m,m)p(x;)'¢(x;). The problem
in (26) can be solved approximately by enumerating the binary
indicator vector h in a bag by bag fashion until there is no
change in h.

2We initialize h; by assigning the entries corresponding to the top #|5;|
instances (i.e., with the highest decision values) in each bag B5; to 1, and the
other entries to 0. In particular, we assign the labels of all training instances
as their corresponding bag labels to train SVM classifiers, and then obtain the
decision values of all training instances based on the learned SVM classifiers.
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The proposed WSDG method is
Algorithm 1.

summarized in

IV. WEAKLY SUPERVISED DOMAIN GENERALIZATION
USING PRIVILEGED INFORMATION

The Web data are generally accompanied by massive and
informative contextual information (e.g., surrounding texts,
tags, and captions). Although the contextual information is not
available for the testing data, they can still be used as PI to
improve the performance of the learned classifiers [9], [18].
Based on the above-mentioned idea, we extend our WSDG
approach by further utilizing PI, i.e., the textual features
extracted from the textual descriptions of Web images/videos,
which leads to our WSDG-PI approach.

Let us denote the textual feature of the i-th training
sample as z;. Inspired by the works in [9] and [18], we
define fe () (Wen) $(z;) as the slack function, in
which ¢ is the feature mapping function for z;. For ease
of presentation, we define the left—hang side of (10) as
FBi,&,m) = (1/1Bi) Xicq, hi et Bin Wy m)' p(xi) —
(Wzn)¢(x;)), and also define F(B, ¢, m) =
1B Sieq hi (M) B Ry $ @) — (e ) @),
Then, we formulate our WSDG-PI approach as

min ZZ (IWeun 2+ 21¥en 1) +Co Z(@m)
wf:;f,f’m c=1m=1

L M
— Cyp(B,Ko (hh)) + C3 Z Z > F(B, &)

c£Y
(27)
st. F(By, é,m) > n— F(By,&,m)—&, VI, m,¢# Y (28)
F(By,é&,m)>n—e, Yl,m,é+Y (29)
&=0, Vi, (30)
€ >0, Vi, (31)

where Cj, C, C3, and 1 are the tradeoff parameters,
and ¢ 1is the slack variable introduced for the slack
function F (B, ¢, m). As discussed in [18], the slack function
F(B;, & m) plays the role of teacher by providing the
explanations to the students, so we expect that F (B, ¢, m)
can well adjust the prediction of F (13, ¢, m) for the sample
those are difficult to be classified.

To derive the solution to the above problem, we write the
dual form of (27) as

. 1 /~h 1 /yh
_ - - — C31 —-C31
min max 2aQot 2,1(“+5 31)'Q"(x + g —C31)
+¢'(a + ¢) — C2p(B, Ko (hh'))
S.t. Zaljc,m =C1) Vl’
c,m

al,c,m z 05 Vl» c,m
Z Cl,c,m = Cl ) Vl,
c,m

Sleem =0, Vil,c,m (32)

where a € RD i is a vector contammg the dual variables a; ¢,
D=L-C-M,¢e RD is a vector containing the dual
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variables ¢7.¢.m, Qh is defined in the paragraph after (13),
and QM is defined by replacing ¢ (x) in Q" with ¢ (z). We leave
the details of deriving the dual form of (27) in the Appendix.

Similar to solving (13), we optimize over the linear
combination coefficients of h,h;’s given all feasible h; € H,
i.e., Zh,eH d,h,h;, where d; is the combination coefficient
for h;h;. We denote T = |H|, d = [di,...,dr], D =
{d|d’'1 = 1,d > 0} as the feasible set of d, A as the feasible
set of & in (32), and & as the feasible set of ¢ in (32). Then,
we can arrive at the problem as follows:

min max — — d, h;
pigmes 3 Y d Qb
ce& t=1

T
1 -
-5 > di(e+ g — C31)QM (e + ¢ — C31)
=1

T
—C2 > dip(B,Ko (h/h)).
t=1

(33)

We solve (33) based on its primal problem, which is an
MKL problem and we can solve it in a similar way as in [44]

T
1 llwi |I* [ 11>
derg,lé/n,s/ 5 z 5 z +C Z(él +€)
Wi, W; t=1

T

—C2 > dip(B,Ko (h/h)))
I:T1 )

+C Y D Wylhy, B, é,m)
t=11,m,;#Y;

T
st Y wyhy, B, é )

t=1

T
G — Z Wiy (h, B, &, m) — &, VI, E, i

zvv;.]/(h,, B, & i) > Clem — €, VI, E, i
=1
where w(h;, B;,c,m) is defined after (15) and
w(h,, Bi,c,m) is the feature mapping 1nduced by QM,
ie., w(h,,Bl,c m)’ w(h,,Bl,c m) = Q,“), in  which
v=(0-1)-C-M+ @E—1)-M+mandu=(1—-1)-C-M+
(c—1)-M + m. w; and W, are defined as

(34)

W = df Z al,c,m I//(ht,B],C, m)’ (35)
Lce,m

Wi =d; D (@rem + Stem — CY (e, Be,m).  (36)
Lce,m

Similar as (15), the problem in (34) is also a convex
problem, which can be solved by updating d and
{w;, Wy, &, €} alternatively.

A. Update d

When {w;, w;, &, ¢} is fixed, we first introduce a dual
variable 7 for the constraint d'1 = 1 to obtain the Lagrangian

Algorithm 2 WSDG-PI Algorithm

Input: The training data {(B;, Y;)|- =1}
1: Initialize t = 1 and® C = {hy}.
2: repeat

3 Sett <+ 1.

4:  Obtain (d, &, ¢) by optimizing the MKL problem in (33)
based on H = C.

5:  Solve (39) to find the violated h;, which is added to the
violation set (i.e., C < C |Jhy).

6: until The objective of (33) converges.

Output: The learnt classifier f(x).

form of (34) similarly as (20). Setting the derivative of the
Lagrangian form with respect to each d; as zero, we arrive at

Iwell® | W12 /
= + 1 + Cap(B,Ko (h/h})), Vi, (37
¥ 2 20( (h/hy)) (37)
which leads to
2 2w, 112
d = w12 4 Allw || i, (38)
2t —2C2p(B, Ko (h;h}))

Similar to (22), (38) is also monotonically decreasing with
respect to 7. So we also use the binary search method to
seek for 7, which satisfies Zthl d; = 1, and calculate d;’s by
using (38).

B. Update {wfa ﬁ}ta 5[9 6[}

When d is fixed, we solve @ and ¢ in (33). In particular,
we concatenate o and ¢ into a long vector #, and thus,
(33) becomes a QP problem with respect to ¥#. Since there are
too many variables in #, it is inefficient to be solved based
on the QP solvers. Similar to Section III-C2, we use the SMO
algorithm to solve (33).

Again, there are too many h/h;’s when using the above
alternating optimization procedure. Similar to Section III-C3,
we employ the cutting-plane algorithm. In each iteration, we
seek for the most violating indicator h by solving the following
problem similarly as the one in (25):

1 'yh 1 'yh
max 2aQ a+2i(a+§ C31)' Q" + ¢ — C31)
+C2p (B, K o (hh')). (39)

The whole algorithm of WSDG using PI (WSDG-PI)
is summarized in Algorithm 2. The testing stage of our
WSDG-PI method is similar to that of WSDG, as discussed
in Section III-B2. Note that w, ,,’s are not used in the testing
phase, because the PI (i.e., textual features) is not available
for the testing samples.

C. Time Complexity Analysis

Our WSDG-PI method consists of two steps, in which we
first discover latent domains by solving the QP problem in (1)
and then learn classifiers by solving the problem in (34). In the
first step, according to [42], the time complexity for solving

3we adopt the same initialization method as in Algorithm 1.
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the nonconvex QP problem in (1) is O((NM)?3), in which
N (resp., M) is the number of training samples (resp., latent
domains).

In the second step, we solve the convex problem in (34) by
employing the cutting-plane algorithm, in which we add the
most violated label candidate and solve the MKL subproblem
at each iteration. Since it is much more time-consuming to
solve the MKL subproblems, the time complexity of the
problem in (34) can be roughly estimated as 7 - O(MKL),
in which T is the number of iterations and O(MKL) is the
time complexity of the MKL subproblem.

Nevertheless, no previous work has studied the time
complexity of MKL theoretically. When solving the MKL
problem in (33), the most time-consuming step is to solve
the convex QP problem with respect to @ and ¢ when
fixing d, which is solved by using our SMO solver. According
to [48], the time complexity of SMO is between O(LCM)
and O((LCM)?>3), in which M is the number of latent
domains, and L and C are the number of bags and categories,
respectively. So the time complexity of MKL (i.e., O (MKL))
is between ¢ - O(LCM) and t - O((LCM)*3), where ¢ is
the number of iterations in MKL. Since our WSDG method
also employs the cutting-plane algorithm and solves an MKL
subproblem by using our SMO solver at each iteration, its time
complexity can be analyzed similarly.

V. EXPERIMENTS

In this section, the effectiveness of our WSDG approach
is demonstrated for image classification and video event
recognition by comprehensive experiments on three
benchmark data sets. We also analyze why we can learn a
better classifier and discover more distinctive latent domains
by removing outliers in our WSDG method. Moreover, we
extend our WSDG method to WSDG-PI, and the experimental
results indicate the benefit of utilizing PI (i.e., additional
textual features).

A. Weakly Supervised Domain Generalization

1) Experimental Settings: Our WSDG method is evaluated
by utilizing the videos and images crawled from Web
to train classifiers for video event recognition and image
classification tasks, respectively. In this paper, we use
multiclass classification accuracy for performance evaluation,
as suggested in [16].

For the video event recognition task, we employ two
benchmark data sets Kodak [49] and CCV [50]. The Kodak
data set contains 195 consumer videos from 6 event categories.
The CCV data set [50] contains 4659 and 4658 videos from
20 categories for training and testing, respectively. Strictly
following the experimental setting in [10], only the videos
belonging to the related event categories are used and the
categories sharing similar semantic meanings are merged,
which finally leads to 2440 videos from five event classes.

In order to collect the training set for video event recognition
from the Internet, Web videos are crawled from Flickr.com
by querying based on the six (resp., five) event category
names for the Kodak (resp., CCV) testing set. For each query,
100 relevant Web videos are downloaded and partitioned
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uniformly according to their ranks to construct 20 bags with
5 instances in each bag.

For the visual features used for video event recognition,
we first extract improved dense trajectory (IDT) descriptors,
which include 100-D trajectory, 96-D histograms of oriented
gradients (HOG), 108-D histograms of optical flow (HOF), and
192-D motion boundary histogram by using the source code
provided in [51]. Then, following the Fisher vector encoding
method in [51], we train 256 Gaussian mixture models by
using the IDT descriptors from the videos in the Flickr
training data set and generate the 128000-D Fisher vector
for each video on both training and testing data sets. Finally,
following [4], we use the ASTPM method to obtain the video
clip distances based on Fisher vectors. When employing the
ASTPM method, we set the volume size as 1/2/ (I =1, ..., L)
of the original video in height, width, and temporal dimension,
in which L is set as 2, as suggested in [4]. Based on the
obtained distance matrices, we calculate the average of RBF
kernel matrices from different pyramid levels, which are used
in the training or testing procedure.

For the image classification task, the BING data set [2] is
used as the source domain, while the Caltech-256 data set
is used as the testing set. Strictly following the experimental
setting in [16], we only utilize the images belonging to
the first 30 categories in the BING and Caltech-256 data
sets. Following [16], 20 training images and 25 testing
images are used per category, which leads to a total of 600
(resp., 750) training (resp., testing) samples. Similar to video
event recognition, we uniformly partition the training images
based on the given indices to construct training bags with five
instances in each bag. We employ the DeCAF features [52]
(i.e., the sixth layer outputs) as the visual features, which leads
to 4096-D DeCAF¢ features.

As Web data are not associated with explicit domain labels
and even the number of latent domains is not given, we
follow [16] to assume there are two latent domains for all
methods on all data sets. We empirically fix C; = C, = 1 and
n = 0.8 (resp., 0.2) for our WSDG approach for image classifi-
cation (resp., video event recognition). For fair comparison, the
optimal parameters are selected for baseline methods based on
their best performances on the testing data set.

2) Baselines: Our WSDG approach is compared with
three sets of baselines: the MIL baselines, the domain
generalization baselines, and the latent domain discovering
baselines. The MIL methods can be categorized into
the instance-level methods, including mi-SVM [21] and
MIL-constrained positive bags (MIL-CPB) [20] and the
bag-level methods, including sparse MIL (sMIL) [53] and
KI-SVM [22]. The domain generalization methods contain
the low-rank exemplar SVM (LRESVM) method [14] and the
domain-invariant component analysis (DICA) method [13].
Note that the approach in [12] cannot be directly applied to
our tasks, since the training Web data are not associated with
the domain labels. For the two latent domain discovering
methods [16], [17], we employ two strategies named Match
and Ensemble following the suggestion in [14].

Furthermore, as the max-margin multiple-instance
dictionary learning (MMDL) method in [36] and the
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TABLE I

ACCURACIES (%) OF BASELINES AND OUR WSDG METHOD, INCLUDING
TWwO SPECIAL CASES FOR THE IMAGE CLASSIFICATION AND
VIDEO EVENT RECOGNITION TASKS. WE DENOTE THE
BEST RESULTS IN BOLDFACE

Testing Dataset

Method Kodak | CCV | Caltech-256

SVM [54] 20.00 | 45.80 70.93
SMIL [53] 3615 | 5052 7133
mi-SVM [21] | 4359 | 5131 7147
MIL-CPB [20] | 46.67 | 51.76 71,60
KI-SVM [22] | 46.15 | 4636 7120
DICA [13] 45.02 | 5080 70.80
LRESVM [14] | 4974 | 54.69 72.93
[16] (Match) | 41.03 | 50.18 71,07
[16] (Ensemble) | 42.05 | 49.96 70.08
[17] (Match) | 45.13 | 50.78 7147
[17](Ensemble) | 46.15 | 52.20 72.40
Sub-Cate [35] | 45.13 | 53.17 7227
MMDL [36] | 47.69 | 54.70 72.80
WSDG_siml | 4821 | 52.02 7187
WSDG_sim2 | 5026 | 5537 74.00

WSDG 5128 | 56.83 75.20

discriminative subcategorization method [35] are related to
our approach, both methods are also used as the baselines.

To demonstrate the benefits of discovering latent domains
and validate our MMD-based regularizer in (9), the
performances of two simplified versions of our WSDG
approach are additionally reported. We refer to them as
WSDG_siml and WSDG_sim2, respectively. In particular, in
WSDG_sim2, we set C; = 0 to remove the MMD-based
regularizer p(B, Ko (hh’)) in our WSDG approach. Based on
WSDG_sim2, the latent domain issues are further ignored by
setting the number of latent domains to one (i.e., M = 1) and
we refer to this case as WSDG_sim1, in which our objective
in (9) can be reduced to that in (6).

3) Experimental Results: The experimental results are
reported in Table I, from which we can see that the
subcategorization baselines MMDL and Sub-Cate, the domain
generalization baselines LRESVM and DICA, and the
latent domain discovering baselines [16], [17] generally
outperform SVM. These results show that exploiting additional
information, such as subcategories, low-rank structure, or
hidden latent domains in the training samples, is helpful.

Another observation is that the MIL baselines
(e.g., mi-SVM, MIL-CPB, sMIL, and KI-SVM) outperform
SVM on all three data sets, although various MIL assumptions
are used in these methods. We also observe that the MMDL
method outperforms both the Sub-Cate method and MIL
baselines, possibly because it simultaneously exploits
subcategories and utilizes the MIL technique to cope with the
label noise in Web data.

The performances of MIL baselines are worse than that
of our special case WSDG_siml, which might because
the classifiers for different categories are jointly learned.
WSDG_sim1 is worse than WSDG_sim2 on all three data
sets, which demonstrates the advantage of integrating multiple
classifiers from different latent domains. Moreover, our WSDG
approach achieves better performances than WSDG_sim?2
on all three data sets, which proves that our MMD-based

s, €
‘s!
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Fig. 2. Top and bottom rows show the most and least confident images for

the category cannon on the Bing data set, respectively. (a) h= L. (b) h=1.
©h=1.(dh=1()h=0.(f) h=0.24. (g h =0.24. (h) h = 0.24.

regularizer in (9) is effective. Another observation is that
WSDG and WSDG_sim2 are better than all the MIL
baselines [20]-[22], [53] and the domain generalization
baselines LRESVM and DICA, which shows the advantage
of handling label noise and exploiting latent domains in the
Web images/videos at the same time.

Finally, the best results are achieved by our WSDG method
on all data sets and the results clearly show that our WSDG
method is effective for the image classification and video event
recognition tasks by utilizing the Web data.

B. Experimental Analysis on WSDG

Recall that in our WSDG method, we tend to identify a
subset of outliers from the training samples and simultaneously
expect the selected samples coming from more distinctive
latent domains by using the indicator h in (9). Let us take
the image classification task (i.e., the training and testing sets
are the Bing and Caltech-256 data sets, respectively) as an
example to show the benefits by introducing h for removing
outliers and discovering more distinctive latent domains.

We first demonstrate the effectiveness of our WSDG
method for removing the outliers. Note that the problem
for solving a binary indicator h is relaxed to seeking
for a linear combination of feasible h;’s, so we calculate
h = Zthl dih; as the approximation of h, where d; and h;
are learned by solving (15). Intuitively, for each element ;
in the vector £, the higher value ﬁi indicates that it is more
confident that the corresponding training image is a true
positive instance. We show the most and least confident images
from the category cannon in the Bing data set and their
corresponding /;’s in Fig. 2. We can observe that the images
with the highest &;’s are all true positive instances (see the top
row), while the images with the lowest h ;’s are the outliers (see
the bottom row). This indicates that our WSDG method is able
to remove the outliers from the training samples, and thus, we
can learn more robust classifiers for the domain generalization
problem.

In order to demonstrate the effectiveness of our WSDG
approach for constructing more distinctive latent domains,
we calculate the SMMDs between each pair of latent
domains to measure the distinctiveness of latent domains.
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TABLE II

SMMDs BETWEEN EACH PAIR OF LATENT
DOMAINS BY USING DIFFERENT METHODS

Method
SMMDs

[16]
24.46

(17]
27.08

WSDG
31.56

We also compare our WSDG method with the latent domain
discovering methods in [16] and [17]. For [16], we denote
the binary latent domain indictor as z;,’s, where 7;,,
indicates whether the i-th training sample comes from
the m-th hidden latent domain, and then, we calculate
the SMMDs between each pair of latent domains as
> i N/ N) X0, Zim ) — 1/ Ni) S0, 7 (50D 112
For [17], we calculate the SMMDs between each pair of latent
domains based on the soft assignment coefficients f,’s as

Zm#ﬁl (B — Bi) K(B — Bi) [see (2)]. For our method, we
first calculate B, = (ﬁ o ﬂm/||fz o Bmll1), and then obtain the
SMMDs between /each pair of the latent domains by using
S i B — Bi) KB — Bi).

In Table II, the image classification task is taken as
an example to report the SMMDs between each pair of
latent domains from different methods. It can be seen
from Table II that the SMMDs of the work in [17]
are larger than that of [16], possibly because the work
in [17] is specifically designed to maximize the SMMDs
between each pair of latent domains. We also observe that
SMMDs of our WSDG approach is larger than that of [17],
which demonstrates that our WSDG method can construct
more distinctive latent domains by removing the outliers.
So our WSDG method has better generalization ability
than [16] and [17].

C. Weakly Supervised Domain Generalization Using
Privileged Information

1) Experimental  Settings: Our proposed WSDG-PI
approach is evaluated using the Flickr Web video data set
(resp., the CCV and Kodak data sets) as the training set
(resp., the testing sets). Note that the Bing data set provided
in [2] is not associated with textual information, so our
WSDG-PI method cannot be evaluated on the Caltech-256
data set. We crawl the surrounding tags of each Flickr video
and extract a 2000-D term frequency (TF) feature based on
the associated tags for each video. When extracting the TF
features, the vocabulary is constructed by using 2000 most
frequent words after removing the stop words. These textual
features of the training data are considered as PI. All other
settings are identical to those in Section V-A. WSDG-PI
has two more parameters C3 and A, compared with WSDG.
We empirically fix C3 as 0.1 and 1 as 10 on both data sets.
For the baselines, the optimal parameters are selected based
on their best performances on the testing data set.

2) Baselines: ~ Our  method is compared with
RankTransfer (RT) [39] and SVM+ [18]. Moreover, we
additionally include Classeme [55] as well as two multi-view
learning methods SVM-2K [56] and kernel canonical
correlation analysis (KCCA) [57] as the baselines, because
they can also utilize both textual features and visual features
of training samples.
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TABLE III

ACCURACIES (%) OF THE BASELINES AND OUR METHODS FOR THE
VIDEO EVENT RECOGNITION TASK. WE DENOTE THE
BEST RESULTS IN BOLDFACE

Testing Dataset

Method Kodak | CCV
SVM [54] 40.00 45.80
SVM-2K [56] 46.15 51.33
KCCA [57] 45.64 51.05
Classeme [55] 44.62 47.67
RT [39] 43.59 49.22
SVM+ [18] 47.69 52.69
sMIL-PI [9] 49.23 54.88
WSDG 51.28 56.83
‘WSDG-PI 55.38 58.15

1) Classeme [55]: For each word in the 2000-D textual
features, we learn a classeme classifier based on the
relevant and irrelevant samples. For each sample from
both training set and testing set, the visual features are
augmented with the 2000 decision values, which are
obtained by using 2000 prelearned classeme classifiers.
Finally, we use the the augmented features to train the
SVM classifiers and predict the testing samples.

2) SVM-2K [56]: SVM-2K classifiers are trained by
utilizing both visual features and textual features of
training data. Then, the classifier based on visual
features is used to classify the testing samples.

3) KCCA [57]: KCCA is employed on the visual features
and textual features of the training data. Then, we use
the projected visual features to train SVM classifiers and
classify the testing samples.

We also compare our WSDG-PI method with sMIL-PI [9],
which can simultaneously cope with label noise and take the
advantage of PI (i.e., textual features). We additionally include
SVM and WSDG for comparison.

3) Experimental Results: The experimental results are
reported in Table III, from which we observe that LUPI
methods SVM+ and RT outperform SVM on both data sets,
which indicates the advantage of utilizing PI (i.e., additional
textual features). Besides, multiview approaches SVM-2K
and KCCA also outperform SVM on both data sets after
employing both visual features and textual features. We also
observe that Classeme outperforms SVM on both data sets.
One possible explanation is that it is helpful to augment the
visual features with the decision values obtained by using
classeme classifiers. Moreover, on both data sets, SMIL and
our WSDG-PI method are better than sMIL reported in Table
I and WSDG, respectively, gain demonstrates the benefits of
utilizing the textual features as PI.

Finally, our method WSDG-PI outperforms all the
baselines on both data sets, which indicates the benefits
of simultaneously handling label noise, exploiting PI, and
learning robust classifiers for better generalization ability.

D. Robustness of Our Approaches With Respect to
Parameters

We take the CCV data set as an example to study the
performance variation of our WSDG and WSDG-PI methods
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TABLE IV
TRAINING TIME (s) OF THE BASELINES WITHOUT USING PI AND OUR WSDG APPROACH ON THE BING AND CCV DATA SET

Method | KI-SVM [16] [17] DICA | LRESVM | Sub-Cate | MMDL | WSDG
Bing 94.89 213.64 | 19.54 | 126.61 2986.57 436.18 195.01 102.15
CCV 20.50 189.91 | 17.49 83.85 2484.31 77.62 46.43 39.54

TABLE V

TRAINING TIME (s) OF THE BASELINES USING PI AND OUR WSDG-PI APPROACH ON THE CCV DATA SET

Method | SVM-2K | KCCA | Classeme RT SVM+ | sMIL-PI | WSDG-PI

CCV 31.67 41.32 1526.12 89.90 37.88 29.16 72.40
by varying one parameter when fixing all other parameters 3500 0.84
as their default values. Note that C;, C»>, and M (i.e., the 3000 082
number of latent domains) are the common parameters shared 2500 S
by our WSDG and WSDG-PI methods, while C3 and y are E?ggg g '
the additional parameters of WSDG-PI method. From Fig. 3, § 1000 §0'78
we observe that our methods are relatively robust when the P s00 0.76
tradeoff parameters Cy, Cp, C3, and y are varied in certain 0.74

ranges. We also observe that the results of our methods are
improved when M increases but less than 5. If M increases
over 5, the results of our methods decrease. One possible
explanation is that the training set is considerably diverse, so
it contains more than two latent domains. On the other hand,
the total number of training samples is limited (only 500 or
600 training images/videos on the Bing/Flickr data set), so that
the results of our methods will decrease if we use too many
latent domains.

E. Comparison of Training Time

We compare the training time of our WSDG and WSDG-PI
methods with other baseline methods. All the experiments
are conducted on a server machine with 18-GB RAM and
Intel Xeon 3.33-GHz CPUs using a single thread. Let us take
the Bing and CCV data sets as two examples. In Table IV,
we report the training time of our WSDG method and other
baselines without using PI. We observe that our WSDG
method is more efficient than other baselines except [17] and
KI-SVM. WSDG is slower than [17], because we need to solve
(9) instead of directly using SVM after employing the latent
domain discovery technique in [17]. KI-SVM is also faster
than WSDG. One possible explanation is that we need to solve
a more complex subproblem in each iteration.

In Table V, we report the training time of our WSDG-PI
method and other baseline methods using PI. Note that the
images in the Bing data set do not have additional textual
information, so we only report the training time on the CCV
data set in Table V. The training time of WSDG-PI is longer

0 600 1200 1800 2400 3000

" 600 1200 1800 2400 3000
Number of training images

Number of training images

Fig. 4. Training time and accuracies of our WSDG method with respect to
the number of training images on the Bing data set.

than that of WSDG reported in Table IV, because we need
to solve a larger scale QP problem at each iteration in our
WSDG-PI method. Our WSDG-PI method is still reasonably
efficient when compared with the other baseline methods.

FE. Time Complexity and Scalability of Our Approach

Let us take the image classification task with Bing as the
training set and Caltech-256 as the testing set as an example
to demonstrate the scalability of our WSDG method. As the
Bing data set and its associated training indices with respect to
various numbers of training samples per category are provided
in [2], we use various numbers of training samples for each
category (i.e., [20, 40, 60, 80, 100]) to construct the training
set in order to evaluate the performance and the scalability
of our algorithms. Since we use 30 categories on the Bing
data set and n training samples per category, we have a total
of 30n training samples. The accuracies and the training time
with various numbers of training samples are shown in Fig. 4,
from which we observe that both the accuracy and the training
time increase as the number of training samples increases.

VI. CONCLUSION

In this paper, a novel WSDG approach has been proposed
for visual recognition tasks by utilizing loosely labeled Web
images/videos as training data. Our WSDG method is able
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to handle the label noise in training Web data and has
good generalization ability to the arbitrary target domain.
In addition, we have extended our WSDG approach to
WSDG-PI by utilizing the textual descriptions of the training
Web data as PI. The effectiveness of our WSDG and WSDG-PI
methods has also been demonstrated by the comprehensive
experiments.

APPENDIX
DERIVATIONS OF (13) AND (32)

The derivations of (13) and (32) are very similar. In fact, the
derivation of (32) can be used for deriving (13) by removing
the terms related to PIL. In the following, we first provide the
derivation of (32), and then discuss how to derive (13).

To derive the dual form in (27), we first reformulate it into
a simpler form. In particular, an intermediate variable ¢; ., 7
is introduced as follows:

ﬁAi m C=Yi
: s~ = i 4
ez,c,m,m [5()’1’! — I’;l) ¢ ;é Vi ( O)
Then, we have Znﬂle ,bA’,-,m(wyi,m)’ng(X,-) = Znﬂle

ei,y;,m,rh(wy,-,m)/¢(xi) and (Wc,rh)/¢(xi) = 2;1;,4:1 ei,c,m,rh
(Wem)'@(x;).  Similarly, we can represent ant1421
Bin Wy, m) ¢(2i) as (We,;7) ¢(2i) by using 6.

Let us define a function G(B;, ¢, m) = (1/|5;]) ZieIl hi
ozt Or.ymin Wy m) B ) = S0 Or i (W) (%0)).
By similarly defining G(B,¢,m) using 0;.,, 7S, the
constraints in (28) and (30) can be uniformly written as
follows:

G(Bl’g, ’/Fl) = CI,E,Vﬁ - (N;(Blaga }’;"l) _il’ Vla Earﬁ (4’1)

in which 3z 7 =0 if ¢ =Y, and {7z ;3 = 5 otherwise.

Similarly, the constraints in (29) and (31) can be uniformly
written as G (B, ¢, m) > (em — €, VI,¢ m.

All wc,,’s are concatenated and we define w =
[W/l’l, el W/le, W/z’l, cel W/C’M]/. Furthermore, a new
mapping function is defined for each B; as ¢(h, B;,c,m) =
[((L/1Bi]) Diep i Oi11.mdlc = Do), ..., (1/|Bil)
Ziel/ hi 0;.c.mmo(c = C)p(x;)']. Similarly, we concatenate
all w.,’s as w and define ¢(h, B, c,m) by replacing
#(x;)’s with ¢(z;)’s. By further denoting y (h, B, c, i) =
o, B, Y, m) — oM,B,c,m) and w(h,B,c,m) =
o(h, B, Y, m) — ¢(h, By, c,m), we observe G(BB;, ¢, m) and
G(B, ¢, m) can be represented as ww(h, B;,c,m) and
Wy (h, B, c, m), respectively, so we can simply the objective
function in (27) as follows:

L
. 1 2 ~ 2
— A C E
hgg»lvl,»‘vZ(”w” + AllwW|9) + Cq & +e)

&€l I=1

—C2 p(B,K o (hh')) + C3W yw (h, By, ¢, m) (42)

st. Wyh, Bi,e,m) > Gem — Wy h, B c,m) — &,
Vi,c,m (43)
WVN/(h, Bi,c,m) > Gem — €1, Yl c,m. (44)

We introduce a dual variable a; ., and ¢; ., for each
constraint in (43) and (44), respectively. When the derivatives
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of the Lagrangian form of (42) with respect to &’s and ¢;’s
are set to zeros, respectively, we can obtain chm Olem =
C1,Vl and >, ¢i.e.m = C1, VI. By, respectively, setting the
derivative of the Lagrangian of (42) with respect to w and w
as zero, we can obtain the following equations:

W= Z al,c,m I/I(ha Bl’ C’ m)a (4’5)

l,c,m

- 1 ~
W = I Z (al,c,m + Sleom — C3)¢/(h, B, c, m). (46)

l,c,m

By substituting (45) and (46) back into the Lagrangian
of (42), we can arrive at the dual form of (42) as follows:

. 1, h 1 72911
__ S — (31 +c¢c—Cs1
min max 2ocQ o 2/1(064-5 31)Q"a+¢ 31)

+ ¢’ (@ + ¢) — C2p(B, Ko (hh'))
s.t. Zal,c,m =Cy, Vi,

c,m

al,c,m Z 09 Vl, C’ m

Zgl,c,m =C, Vi,

c,m

Sl,e,m = 0, Vi,c,m 47)
where a € R? (resp., ¢ € R? ) is a vector containing the dual
variables a7 e (resp., ¢iem )»and D = L-C-M, ¢ € RP
is a vector, in which each entry (. em = 0 if ¢ = Y; and
Cle.m = 1 otherwise. QM € RP*P is a matrix with each entry
being Qlu‘ju =y(h, By, c,m) y(h, B;j, ¢, m), in which u and v
are the indices defined in the following paragraph (13), and
Q" is similarly defined as Q" by replacing w (h, B, ¢, m) with
l;/(h, B, c,m).

In the following, we derive the detailed form of Q',}ju
and QL‘U Recall that w(h, B, c,m) = o, B, Y, m) —
o(h, By, c, m), then we can obtain that

w(h, By, c,m) y(h, B, ¢, m)
= (p(h, B, Yi,m) — p(h, B, c,m))’
x (p(h, By, Y, m) — ¢(h, By, ¢, m))
= —op(h, B, Y, m) o, By, é,m)+ e, B, Y, m)
x ¢(h, B, Y5, m)
+ o, By, c,m) p(h, By, é,m) — o, B, c,m)
Let us define Sy = ¢, B,Y,m) ¢, B¢, m),
S = o, B, Y, m) ¢, B, Y;,m), S3 = ¢, B, c,m)
p(h, B;, ¢,m), and S4 = @(h, B;,c,m)" ¢(h, B;, Y7,1), then
w(h, B, c,m) w(h, Bf’ ¢,m) = —S1+ 8+ 53— S4. We derive
the detailed form of Si, S», S3, and S4 as follows. Recall
that p(h, By, c,m) = [(1/IBil) 2icp hi Oin1mdlc = 1)
¢y, (1/IBIl) 2iep hi Oicmmdlc = C)p(x)T.
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The first term S; can be derived as

St =M, B,Y, m)/(/)(h, B;, ¢, m)
= Ilel - > hih; [5@ = Y))d(c = Y)Z,B,qﬂ]q
I jer Jjely
X ¢(Xf)’¢(Xj)+(l—5(c:Yz))
x 5(c=Yl~)ﬁ,-,m¢<xi)’¢<x,-)}.
(49)
The second term S» is derived as

S, = o(h, By, Yi,m) p(h, By, Y;, )

_ oy, = Yi)

M
|Bi11B; DD kil D BigBrapx)'d(x)). (50)
i

iel; jely g=1

Similarly, we can derive the third term S3 as follows:
§3
= o(h, B, c,m) p(h, B;, ¢, m)

D> hihj

i€l jely

=9

IBE] [5(0 =)o@ =1y Zﬂz WBia

X p(xi) p(x))+(1 = d(c = ¥1)o(E = Y;)/f,»,m¢<xi)/¢<x,»)
+6(c = Y))(1 — 6@ = Y)) B (%) (X))
+(1 = 6(c = Y)(1 = 6 = ¥p)d(m = nﬁ>¢<xi>’¢(x,->].
(51)
Finally, the last term Sy is derived as

S4

QD(h, Bla ¢, m)/(ﬂ (ha B[’ Yi’ ’/h)

1 Mo
B 2 2 it [5(5 =YDoE =)D Biabiq

i€l jely g=1
x ¢(x:) p(x;)+(1
5(E=Y1)ﬁi,m¢<x,~>/¢(xj>] (52)

—d(c=Y7))

By substituting [49]-[52] into (48), and combining similar
terms, we arrive at

W(h5 Bl’ C’ m)/l//(h’ B~’ E’ ’;l)
—Sl + S+ 53— 54

D> hih;

iel; jely

|Bl|| B;|

. [m = ¥)(1 = d(c = 1))

M

x (1=3@=YD) D BiqgBigd ) $(x))
qg=1

— (1 =6(c = Y))(1 = 8(c = &))d(c = Y3)

13

X Bimp () p(x;) — (1 — 6@ = Yp)(1 — d(c = &))
x 3@ = Y Biap(x:) $(x;) + d(m = m)d(c = ¢)

x (I =d(c=Y)1—d(c= Yl))¢(xi)/¢(xj):|
1

= m z Zhlh]¢(xl)/¢(xj)y (l’ j» c, E’ m, I’;l),
l

iel; jek

where y (i, j, ¢, ¢, m, m) is defined in the paragraph after (13).
Recall that QIM‘,D w(h, By, c,m) yh, B, ¢, m), where

u and v are the indices defined in the paragraph after (13),

0 Qi U/IBIIBD Siey, ey ik $(x) b (x))

y (i, j,c,c,m,m). Note that the detailed form of each

entry in Q" ie., Qu ,» can be similarly derived by
replacing ¢(x;) with $(z;). Given the detailed form of
each entry in Q" and QM the optimization problem in (47)
is equivalent to (32), so we complete the derivation
of (32) here.

To derive (13), by concatenating all w, ,’s as w and using
the same definition of ¢(h, B;, ¢, m), we can simplify the
problem in (9) as follows:

L
1
min ~[w[*+ C1 D & — C2 p(B, Ko (hh))
heH 2
w,¢ I=1
S't' W/l//(h9 Blﬂcﬂ m) 2 Cl,c,m _él; Vl,C,m. (53)

After introducing the dual variable a;.,,’s for the

constraints in (53), we can similarly obtain the dual form
of (53) as (13).
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