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Visual Recognition in RGB Images and Videos
by Learning from RGB-D Data

Wen Li, Lin Chen, Dong Xu, Senior Member, IEEE , and Luc Van Gool

Abstract—In this work, we propose a framework for recognizing RGB images or videos by learning from RGB-D training data that
contains additional depth information. We formulate this task as a new unsupervised domain adaptation (UDA) problem, in which we
aim to take advantage of the additional depth features in the source domain and also cope with the data distribution mismatch between
the source and target domains. To handle the domain distribution mismatch, we propose to learn an optimal projection matrix to map
the samples from both domains into a common subspace such that the domain distribution mismatch can be reduced. Such projection
matrix can be effectively optimized by exploiting different strategies. Moreover, we also use different ways to utilize the additional depth
features. To simultaneously cope with the above two issues, we formulate a unified learning framework called domain adaptation from
multi-view to single-view (DAM2S). By defining various forms of regularizers in our DAM2S framework, different strategies can be
readily incorporated to learn robust SVM classifiers for classifying the target samples, and three methods are developed under our
DAM2S framework. We conduct comprehensive experiments for object recognition, cross-dataset and cross-view action recognition,
which demonstrate the effectiveness of our proposed methods for recognizing RGB images and videos by learning from RGB-D data.

Index Terms—domain adaptation, object recognition, human action recognition.

F

1 INTRODUCTION

W ITH the advance of RGB-D equipments (e.g.,
Kinect sensors) for capturing depth information,

there is an increasing research interest in developing
new technologies using depth images and videos for
various visual recognition tasks (e.g., object recognition,
face recognition, and action recognition). While the ef-
fectiveness of depth information has been demonstrated
in recent works, those techniques cannot be applied to
most ordinary visual recognition applications, in which
images and videos are captured by conventional RGB
cameras (e.g., smartphones).

To this end, we propose a new framework for recog-
nizing RGB images and videos captured with the con-
ventional cameras by leveraging a set of labeled RGB-D
data. Our work is based on the observation that several
labeled RGB-D datasets [1], [2], [3] were recently released
for various vision recognition tasks as well as the recent
progress on learning using privileged information [4],
[5], which shows the additional features (i.e., privileged
information) that are not available at the testing stage are
still useful for many classification tasks. In the context
of our work, depth information is usually more robust
to illumination changes and complex backgrounds in
the visual recognition tasks, compared with the RGB
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Zürich, Switzerland.
E-mail: {liwen,vangool}@vision.ee.ethz.ch

• L. Chen is with the Amazon, 500 Boren Avenue North, Seattle, WA 98109.
E-mail: gggchenlin@gmail.com

• D. Xu is with the School of Electrical and Information Engineering, The
University of Sydney, Sydney, NSW 2006, Australia.
e-mail: dongxudongxu@gmail.com

Fig. 1. Image recognition in RGB images by learning
from RGB-D data: we have both RGB images and depth
images in the source domain, and only RGB images in
the target domain.

images/videos, and thus providing complementary in-
formation for recognizing RGB images and videos.

Another issue is that the RGB testing data and the
RGB-D training data are captured with different equip-
ments, which leads to a domain distribution mismatch
between the training and test data. This is also known as
the dataset bias problem [6]. When one dataset is used
for training and another dataset is used for testing, the
performance of most existing visual recognition methods
will be degraded significantly because the feature dis-
tributions of samples from different datasets may have
very different statistical properties. To cope with the con-
siderable variation in feature distributions, new domain
adaptation methods were recently developed in both
machine learning and computer vision communities [7],
[8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18].

In this work, we formulate our task as a new unsu-
pervised domain adaptation (UDA) problem, in which
we have single-view visual features extracted from the
RGB images or videos in the target domain (the domain
of test data) while we have both visual features and
depth features in the source domain (see Fig 1). We
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propose a unified framework called Domain Adaptation
from Multi-view to Single-view (DAM2S), in which we
simultaneously address the domain distribution mis-
match between the source and target domains and also
take advantage of the additional depth features in the
source domain to learn robust classifiers for classifying
the target RGB images or videos.

In our preliminary work [19], we have proposed an ap-
proach for recognizing RGB images by exploiting RGB-
D images from the source domain, in which we simul-
taneously reduce the domain distribution mismatch be-
tween two domains by minimizing the Maximum Mean
Discrepancy (MMD) criterion [20], and map the sam-
ples with the visual and depth features into a common
subspace by maximizing the correlation of two types of
features in the common subspace. In this work, we show
that under our newly proposed DAM2S framework,
more strategies can be employed to effectively cope with
those two issues by defining different forms of regular-
izers. In particular, to address the domain adaptation
issue, we propose to learn an optimal projection matrix
to map the samples from both domains into a common
subspace such that the domain distribution mismatch
can be reduced. Such projection matrices can be effec-
tively optimized by exploiting different strategies, such
as reducing Maximum Mean Discrepancy (MMD) or
aligning the source and target subspaces. Moreover, to
effectively utilize the additional depth features, we can
also employ different strategies, by either maximizing
the correlation between different types of features in
the common subspace, or preserving the consistency of
the classifiers from different features. Accordingly, we
develop three methods under our DAM2S framework
for effectively recognize RGB images and videos in the
target domain by exploiting the RGB-D data in the
source domain, in which the approach proposed in our
previous work [19] can be regarded as an example under
our newly proposed framework.

We conduct comprehensive experiments on differ-
ent visual recognition tasks to evaluate our proposed
DAM2S methods. Besides the object recognition and gen-
der recognition tasks in [19], we also conduct additional
experiments for cross-dataset human action recognition
and cross-view human action recognition in RGB videos
by exploiting a set of RGB-D videos. We demonstrate
that the proposed methods under our DAM2S frame-
work outperform the state-of-the-art methods including
the existing UDA methods, multi-view learning methods
and learning using privileged information methods.

2 RELATED WORK

Domain Adaptation: Our work is related to domain
adaptation, in which the distribution of test data is
different from that of training data [7], [21], [9], [11],
[15], [16], [17], [18], [12], [22]. In particular, the un-
supervised domain adaptation (UDA) methods assume
there is no labeled data in the target domain. Different

strategies have been proposed to reduce domain distri-
bution mismatch including sample reweighting, feature
transformation, classifier adaptation, etc. However, those
UDA methods assume the source domain samples share
the same feature representation with the target domain
samples, so it is unclear how to effectively utilize the
additional depth features in the source domain.

Recently, heterogeneous domain adaptation (HDA)
methods [23], [10] were also proposed, in which the sam-
ples from different domains are generally represented
by different types of features. However, labeled samples
in the target domain must be provided in the existing
HDA methods [23], [10], while we do not require any
labeled target domain samples in this work. Moreover,
the samples in the source domain are represented by
using only one type of features in the existing UDA and
HDA methods. In contrast, in this work we have both
visual and depth features in the source domain, while
the depth features are not available at the testing stage.

Our work is also different from the existing multi-
view domain adaptation methods [24] and the recent
work called multi-domain adaptation from heteroge-
neous sources (MDA-HS) [25]. In [24], all the samples
in the source and target domains have multiple types
of features, while in [25] the samples from the target
domain have all types of features from all source do-
mains. In contrast, we only have single-view features in
the target domain. Our work is different from existing
multi-domain adaptation methods [12], [26], because we
have additional depth features in the source domain, and
we focus on the single source domain setting.

Learning using Multiple Features and Privileged
Information: Our work is also related to multiple-view
learning, where the training data consists of multiple
views of features. One of the representative works
is canonical correlation analysis (CCA) as well as its
kernel variant kernel CCA (KCCA) [27], in which a
common subspace is learnt to maximize the correla-
tions between different views of features. When the
labels of training samples are available, the consistency
criterion [28] is commonly used in the multiple view
learning methods, which assumes the classifiers from
different views should have consistent predictions. Most
multi-view learning works were proposed for the semi-
supervised learning scenario, such as co-training [29],
co-labeling [30] and so on. However, those multi-view
learning works assume that the test data also consists of
multiple views of features, which is different from our
problem, where we only have one type of features in the
target domain.

Recently, several works [4], [5], [31], [32], [33], [34],
[35] were proposed for learning using privileged infor-
mation, in which the training data contains additional
features (i.e., privileged information) that are not avail-
able at the testing stage. However, these works [4], [5],
[31], [32] assume that the training and test samples come
from the same data distribution. Recently, Hoffman et al.
proposed to detect object in depth testing data by using
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RGB-D training data in [36], while a network hallucina-
tion approach was proposed for object detection in RGB
images by leveraging depth information in the training
data in [37]. While their work specifically focuses on the
object detection task, it would be an interesting research
topic to combine the features extracted from those deep
learning methods and the newly proposed classification
methods DAM2S to improve the classification results.

3 DOMAIN ADAPTATION WITH ADDITIONAL
FEATURES

For ease of presentation, we denote a vector/matrix by
a lowercase/uppercase letter in bold. The transpose of a
vector/matrix is denoted by the superscript ′. We define
In as the n× n identity matrix. We also define 1n ∈ Rn

as the n × 1 column vectors of all ones. For simplicity,
we also use I and 1 when the dimension is obvious.

3.1 Framework
We extract the visual features and depth features from
the RGB images/videos and depth images/videos, re-
spectively. The source domain samples can be repre-
sented as {(zi,xs

i )|
ns
i=1} where zi and xs

i are respectively
the depth feature and the visual feature, and ns is the
total number of samples in the source domain. We also
define li,k ∈ {+1,−1} as the label of the i-th sample
corresponding to the k-th class, where k = 1, . . . ,K, and
K is the number of classes. Namely, li,k = 1 means the
i-th sample belongs to the k-th class, and li,k = −1,
otherwise. Similarly, the target domain samples can be
represented as {xt

i|
nt
i=1} where xt

i is the visual feature for
the i-th target domain sample and nt is the total number
of samples in the target domain.

Subspace learning has been shown to be robust to
various visual variations [38]. To handle the distribution
mismatch, we learn a common subspace (parameterized
by a matrix P) for the visual features from two do-
mains, such that the domain distribution mismatch can
be reduced in this common subspace. A classifier fv is
learnt in this common subspace for predicting the test
samples. Moreover, to incorporate the depth features of
training samples, we also learn an auxiliary classifier
fd, which is used to help the learning of fv. Based
on the empirical risk minimization (ERM) principle, we
formulate a unified learning scheme as follows,

min r(fv, fd) + Cℓ(fv, fd) + µΩ(P) + λ∆(·, ·), (1)

where r(fv, fd) is the regularizer to control the complex-
ity of the classifiers fv and fd, Ω(P) is the regularizer
term on the parameter matrix P that decides the com-
mon subspace, ℓ(fv, fd) is the loss term on the training
samples, and C, µ and λ are the tradeoff parameters.
The last term ∆(·, ·) is a regularizer term to associate the
depth features and visual features, such that fd can be
used to help the learning of fv. For example, we can
enforce the decision values of two classifiers fv and fd

to be consistent on the training samples, so the last term

can be written as ∆(fv, fd). We use a general form ∆(·, ·)
in (1) in order to exploit other strategies.

With the above framework, we employ different strate-
gies to cope with the domain distribution mismatch,
which leads to different regularizers Ω(P). To further
utilize the depth features, we also define different ∆(·, ·)
for associating the visual and depth features. We will
discuss the detailed forms of those terms, and develop
the corresponding algorithms below.

3.2 Learning Projection for Domain Adaptation
In the following subsections, we investigate two strate-
gies for learning the projection matrix P such that the
data distribution mismatch between the source and tar-
get domains based on the visual features can be reduced.

3.2.1 Reducing the Maximum Mean Discrepancy
Our first strategy is to minimize the Maximum Mean
Discrepancy (MMD) [20] criterion, which is widely used
to measure the distribution difference between the data
sampled from two datasets.

Let us denote ϕ(·) : RDv → Rmv as the nonlin-
ear feature mapping induced by a characteristic kernel
Ks

v = Φ′
sΦs, where Φs = [ϕ(xs

1), . . . , ϕ(x
s
ns
)] ∈ Rmv×ns

is the data matrix of source samples in the nonlinear
feature space, Dv is the dimensionality of the origi-
nal features, mv is the dimensionality of the nonlinear
features that is usually unknown and can be infinite.
The MMD between two domains can be written as,
MMD .

= ∥ 1
ns

∑ns

i=1 ϕ(x
s
i )− 1

nt

∑nt

i=1 ϕ(x
t
i)∥2.

In this work, we aim to learn a projection matrix
P ∈ Rmv×m such that the MMD between the source and
target domains is reduced after projecting the samples
from two domains into a m-dimensional common sub-
space with this projection matrix 1. The MMD criterion
has been used in the literature for minimizing the dis-
tribution mismatch when learning latent features in [39],
[40]. Motivated by those works, we define the regularizer
Ω(P) in (1) as follows,

Ωmmd(P) =
1

2
∥ 1

ns

ns∑
i=1

P′ϕ(xs
i )−

1

nt

nt∑
i=1

P′ϕ(xt
i)∥2. (2)

3.2.2 Aligning two Subspaces
Recently, another subspace based approach called sub-
space alignment (SA) was proposed in [17] for domain
adaptation, in which they aim to align the subspaces of
the source and target domains. Specifically, let us denote
Ss ∈ RDv×m as the projection matrix, which projects
the source domain samples into the source subspace,
where m is the dimension of the source subspace. Such a
projection matrix can be obtained by using the subspace
learning methods such as principle components analysis
(PCA). Similarly, we denote the projection matrix of

1. While mv is unknown and can be infinite, in the implementation,
we solve the matrix P in the kernel space without explicitly knowing
the dimension mv (see [19]).
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target subspace as St ∈ RDv×m. Then, the objective of
SA can be formulated as,

min
T

∥SsT− St∥2F , (3)

where T ∈ Rm×m is a transformation matrix aligning
the source subspace to the target subspace. The above
problem has the closed form solution, namely, T = S′

sSt.
After obtaining the transformation matrix, the source
samples can be transformed into the target subspace for
learning the classifier for predicting the samples in the
target domain.

However, the SA method was originally developed for
the linear case. Moreover, it does not consider the labels
of training samples for learning a discriminative trans-
formation. Finally, the additional depth features cannot
be used, either. In the following, we first extend SA into
kernel SA (KSA), and propose a new regularizer based
on kernel SA, which can be readily incorporated into
our DAM2S framework for learning robust classifiers by
additionally considering the depth features.

Given a kernel matrix K = Φ′Φ with Φ being the
nonlinear features induced by K, we can obtain the
projection matrix S = ΦA by using kernel PCA (KPCA),
where A is a coefficient matrix that satisfies A′Φ′ΦA =
I. Recall the kernel matrix based on the source domain
visual features is denoted as Ks

v = Φ′
sΦs, and we also

denote Kt
v = Φ′

tΦt as the kernel matrix on the target
domain visual features, where Φt = [ϕ(xt

1), . . . , ϕ(x
t
nt
)] ∈

Rmv×nt . Then, we can obtain two projection matrices
by using KPCA, Ss = ΦsÃs and St = ΦtÃt, where
Ãs ∈ Rns×m and Ãt ∈ Rnt×m are two coefficient
matrices. Then we formulate the kernel SA problem as,

min
T

∥ΦsÃsT−ΦtÃt∥2F , (4)

which has the closed form solution that T = Ã′
sΦ

′
sΦtÃt.

Finally, we introduce a new regularizer for the objective
in (1) as follows,

Ωksa(P) =
1

2
∥P−T∥2F (5)

where T is pre-learnt by using kernel SA as described
above. Note we use the same symbol P in (5) as the
one in the MMD based regularizer Ωmmd(P) for ease
of presentation, their physical meanings are different.
The matrix P in the MMD based regularizer in (2) is
the projection matrix, which is used to project the visual
features of source and target domains into the common
subspace, while the matrix P in the kernel SA based
regularizer is the transformation matrix, which is used
to transform the visual features in the source subspace
to the target subspace.

3.3 Incorporating Depth Information
In this section, we investigate how to effectively incorpo-
rate the depth features to learn more robust classifiers.
Our methods are motivated by the two-view learning
works, in which different views of features help each

other to learn robust classifiers. In the follows, we con-
sider two different strategies by maximizing the feature
correlation and retaining the classifier consistency.

3.3.1 Maximizing Feature Correlation
Canonical correlation analysis (CCA) is one pioneering
work in two-view learning, which aims to learn two
projection matrices to map the training samples with
different features into a common subspace, such that the
feature correlation can be maximized. Kernel canonical
correlation analysis (KCCA) is an extension of CCA
by applying the kernel trick. Formally, let us denote
ψ(·) : RDd → Rmd as the nonlinear feature mapping
induced by the kernel Kd based on the source domain
depth features, where Dd is the dimension of the original
depth features, and md is the dimensionality of the non-
linear features. We also define Ψ = [ψ(z1), . . . , ψ(zns)] ∈
Rmd×ns as the data matrix of nonlinear depth features
(i.e., Kd = Ψ′Ψ).

Now we consider how to incorporate the KCCA
method into the formulation of our DAM2S framework
in (1). Recall that in (1), we aim to learn a projection
matrix P for the visual features such that the domain
distribution mismatch can be reduced. To employ the ad-
ditional depth features, we assume that in the common
subspace, our framework can not only reduce domain
distribution mismatch, but also maximize the feature
correlation between two types of features. Therefore, we
define the regularizer ∆(·, ·) in (1) as follows,

∆mfc(P,Q) = −tr(Q′ΨΦ′
sP) (6)

where (P,Q) ∈ PA = {(P,Q)|P′ΦsΦ
′
sP + Q′ΨΨ′Q =

Im}. By minimizing the above regularizer, the correlation
between two types of features will be maximized when
learning the classifiers in the common subspace.

Then, we learn the two classifiers fv and fd based on
the projected visual and depth samples in the common
subspace. In particular, we respectively learn two SVM
classifiers fv and fd for the visual and depth features in
the new subspace determined by the projection matrices
P and Q. Let us denote the visual feature based decision
function for the k-th class as fvk (x) = w′

kP
′ϕ(x) + bk,

and the depth feature based decision function for the k-
th class as fdk (z) = w̃′

kQ
′ψ(z) + b̃k, where wk and w̃k

are the weight vectors, and bk and b̃k are bias terms.
We propose the following objective function for learning
the classifiers from two types of features and K classes
and two projection matrices P and Q that decide the
common subspace,

min
(Q,P)∈PA,wk,w̃k,

bk,b̃k,ξ
v
i,k,ξ

d
i,k

1

2

K∑
k=1

(∥wk∥2+∥w̃k∥2)+C
K∑

k=1

ns∑
i=1

(ξvi,k + ξdi,k)

+µΩmmd(P) + λ∆mfc(P,Q), (7)
s.t. li,k(w

′
kP

′ϕ(xs
i ) + bk) ≥ 1− ξvi,k, (8)

li,k(w̃
′
kQ

′ψ(zi) + b̃k) ≥ 1− ξdi,k, (9)

ξvi,k ≥ 0, ξdi,k ≥ 0, ∀i, k,
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where ∥wk∥2 (resp., ∥w̃k∥2) is the regularizer to control
the complexity of the classifier fvk (resp., fdk ), ξvi,k (resp.,
ξdi,k) is the hinge loss from the k-th classifier for the i-th
sample using the visual feature (resp., the depth feature),
Ωmmd(P) is the MMD based regularizer as defined in (2),
∆mfc(P,Q) is the regularizer for maximizing the feature
correlation as defined in (6), PA is the feasible set of
(P,Q), and C, µ and λ are the tradeoff parameters as
defined in (1).

Note the regularizer r(fv, fd) in (1) corresponds to
1
2

∑K
k=1(∥wk∥2 + ∥w̃k∥2) in the above objective, and the

loss term ℓ(fv, fd) is
∑K

k=1

∑ns

i=1(ξ
v
i,k + ξdi,k). We refer

to the above formulation as DAM2S_A. After optimizing
the above problem, the final classifier is obtained by
equivalently fusing the decision values from those two
classifiers (i.e., f(x) = 1

2 (w
′
kP

′ϕ(x)+bk+w̃′
kP

′ϕ(x)+ b̃k))
for predicting any test sample x from the target domain.

3.3.2 Enforcing Classifier Consistency
Using the MMD based regularizer: Besides the KCCA
based approach, another strategy in multi-view learning
is to enforce the classifier consistency, i.e., to enforce the
predictions from the classifiers learnt on two types of
features to be consistent on the training data. Formally,
let us define the depth feature based SVM classifier for
the k-th category as fdk (z) = w̃′

kψ(z) + b̃k. Correspond-
ingly, we denote fvk (x) = w′

kP
′ϕ(x) + bk as the visual

feature based SVM classifier for the k-th category, which
is the same as defined in Section 3.3.1 with P being
the projection matrix for the visual features. Inspired
by the SVM2K method [28], we define the regularizer
∆(·, ·) in (1) by using the ϵ-insensitive loss of training
samples based on the predictions from the visual and
depth features based classifiers, namely,

∆ecc(fv, fd) =
K∑

k=1

ns∑
i=1

ηi,k (10)

where ηi,k = max(ϵ,
∣∣fvk (xs

i )− fdk (zi)
∣∣), and ϵ is a con-

stant set as 0.001 in our experiments. By minimizing the
above regularizer, the visual and depth features based
classifiers are enforced to be consistent for each category.
Then we arrive at the following objective function,

min
P∈PB ,wk,w̃k,

bk,b̃k,ξ
v
i,k,ξ

d
i,k

1

2

K∑
k=1

(∥wk∥2+∥w̃k∥2)+C
K∑

k=1

ns∑
i=1

(ξvi,k + ξdi,k)

+µΩmmd(P) + λ∆ecc(fv, fd), (11)
s.t. li,k(w

′
kP

′ϕ(xs
i ) + bk) ≥ 1− ξvi,k, (12)

li,k(w̃
′
kψ(zi) + b̃k) ≥ 1− ξdi,k, (13)

ξvi,k ≥ 0, ξdi,k ≥ 0, ∀i, k,
where the first two terms are used to control the com-
plexity of classifiers, the third and fourth terms are
the hinge loss defined as in DAM2S_A, the regularizer
Ωmmd(P) is the MMD based regularizer as defined in
(2), and the last term ∆ecc(fv, fd) is the regularizer in
(10) for enforcing the classifier consistency. Note we do
not learn the projection matrix Q for the depth features,

TABLE 1
Summary of the objective functions from our three

DAM2S algorithms.

Method DAM2S_A DAM2S_B DAM2S_C

r(fv , fd) 1
2

∑K
k=1(∥wk∥2 + ∥w̃k∥2)

ℓ(fv , fd)
∑K

k=1

∑ns
i=1(ξ

v
i,k + ξdi,k)

Ω(P) Ωmmd(P) Ωksa(P)

∆(·, ·) ∆mfc(P,Q) ∆ecc(fv , fd)

because we alternatively exploit the classifier consistency
between the two types of features. Accordingly, the
feasible set is defined as PB = {P|P′ΦsΦ

′
sP = Im}.

We refer to the above formulation as DAM2S_B. After
optimizing the above problem, the visual feature based
classifiers fvk ’s are used to predict the samples in the
target domain in the testing stage.

Using the kernel SA based regularizer: As discussed
in Section 3.2.2, we can also employ the kernel SA based
regularizer to reduce the domain distribution mismatch.
In particular, by replacing the regularizer Ωmmd(P) in
(11) with the kernel SA based regularizer defined in (5),
we arrive at the following objective function,

min
P,wk,w̃k,

bk,b̃k,ξ
v
i,k,ξ

d
i,k

1

2

K∑
k=1

(∥wk∥2+∥w̃k∥2)+C
K∑

k=1

ns∑
i=1

(ξvi,k + ξdi,k)

+µΩksa(P) + λ∆ecc(fv, fd), (14)
s.t. li,k(w

′
kP

′S′
sϕ(x

s
i ) + bk) ≥ 1− ξvi,k, (15)

li,k(w̃
′
kψ(zi) + b̃k) ≥ 1− ξdi,k, (16)

ξvi,k ≥ 0, ξdi,k ≥ 0, ∀i, k,

which is referred to as DAM2S_C. As in DAM2S_B, the
learnt visual feature based classifiers fvk ’s are used to
predict the samples in the target domain in the test stage.

3.4 Summary and Optimization
Summary: By using different strategies, we have pro-
posed two regularizers to reduce the domain distribution
mismatch and two forms of ∆(·, ·) for incorporating the
depth features., which leads to three DAM2S algorithms,
DAM2S_A, DAM2S_B and DAM2S_C, as summarized in
Table 1. We use the SVM classifiers for both types of
features in all three algorithms, so the regularizer for
controlling the classifier complexity and the loss term are
the same. Then, we employ the MMD based regularizer
Ωmmd(P) in DAM2S_A and DAM2S_B, and the kernel SA
based regularizer Ωksa(P) in DAM2S_C. For incorporat-
ing the depth information, we utilize the feature corre-
lation maximization based regularizer in DAM2S_A, and
the classifier consistency based regularizer in DAM2S_B
and DAM2S_C. Note we do not combine the kernel SA
based regularizer Ωksa(P) and the feature correlation
maximization based regularizer ∆mfc(P,Q), because the
transformation matrix P in kernel SA has a different
physical meaning with the projection matrix P in KCCA.

Optimization: We employ the similar alternating op-
timization strategy as in our preliminary work [19]. The
above three problems can be optimized in a unified form
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by deriving their dual forms, in which the parameter ma-
trix P (or parameter matrices (P,Q)) can be written in
a single matrix in the dual form. Then, we alternatingly
optimizing this matrix, and the SVM dual problems. This
procedure is repeated until convergence. We leave the
details in the Supplementary.

4 EXPERIMENTS

4.1 Baseline Approaches

To the best of our knowledge, most existing works
are not specifically designed for recognizing RGB im-
ages/videos in one domain by learning from the RGB-D
data from another domain. Thus, we extend a broad
range of existing works as the baselines for fair com-
parison, which includes:
Naive Approach: The naive approach SVM A is trained
by using the visual features in the source domain with-
out considering the domain distribution mismatch or the
additional depth features.
Multi-view Learning: The multi-view learning ap-
proaches include KCCA [27] and SVM2K [28], in which
the two-view data in the source domain are used for
training. We use the classifier trained on the visual
features for prediction. For SVM2K, two classifiers are
trained by using the two-view data in the source domain,
and we use visual feature base classifier to predict the
target domain data. For KCCA, we train two SVM clas-
sifiers by using the projected depth and visual features
in the common subspace. For the target samples, the
decision values from the two classifiers based on the
projected visual features are equally fused for prediction.
Learning Using Privileged Information: We compare
our methods with the SVM+ approach proposed in [4], in
which we use the additional depth features in the source
domain as privileged information for learning the visual
feature based classifier.
Unsupervised Domain Adaptation: The domain adapta-
tion approaches include KMM [21], DAM [12], SGF [11],
TCA [40], Landmark (LMK) [16], Subspace Alignment
(SA) [17], and Domain Invariant Projection (DIP) [18].
For these methods, the samples from both domains
based on the visual features are used for training the
classifiers, and we predict the target domain data based
on the visual features.

Note that the semi-supervised multi-view learning
methods [41] and the multi-view domain adaptation ap-
proaches [24] cannot be applied for our problem, because
we only have single view of features for the samples in
the target domain. Moreover, the heterogeneous domain
adaptation (HDA) methods [10], [23] also cannot be used
because the labeled samples in the target domain are
required in these HDA methods.

4.2 Experimental Setup

We evaluate the effectiveness of our proposed three al-
gorithms for different visual recognition tasks, including

object recognition, cross-dataset human action recogni-
tion, and cross-view human action recognition.

Object Recognition: We evaluate our proposed three
DAM2S algorithms for object recognition by using the
RGB-D Object dataset [1] as the source domain and the
Caltech-256 dataset [42] as the target domain. The RGB-
D Object dataset contains the color and depth images
of different objects from 51 categories. The Catech-256
dataset contains only the color images. In this work,
we use the 10 common categories between the two
datasets, which leads to a total number of 2059 training
images. Moreover, all the target domain samples are
also used as unlabeled data in the training stage for the
baseline domain adaptation methods and our DAM2S
algorithms.

For the RGB images from both source and target
domains, we extract 4, 096-dim DeCAF6 features [43].
For depth images in the source domain, we follow [44] to
extract the kernel descriptors (KDES) features including
Gradient KDES and LBP KDES from each depth image.
The vocabulary size is set as 1000, and three levels
of pyramids are used. Finally, the object level features
constructed from the Gradient KDES and LBP KDES
features are concatenated into one feature vector for each
depth image.

Cross-Dataset Human Action Recognition: For cross-
dataset action recogntion, we use the Hollywood 3D
dataset [2] as the source domain, and the Hollywood2
dataset [45] as the target domain. The Hollywood2
dataset is a widely used benchmark dataset for human
action recognition, which contains 1, 707 (823 in the
training set and 884 in the test set) RGB videos from
12 human actions cropped from the Hollywood movies.
Similarly, the Hollywood 3D dataset contains 650 RGB-
D video clips from 14 human actions cropped from the
Hollywood 3D movies. We use the left-eye video clips
as the RGB training videos, and the reconstructed depth
video clips as the depth training videos. Since the video
clips in the two datasets are cropped from different
movies captured using different types of equipments in
different years, there is considerable domain distribution
difference between these two datasets. In our experi-
ments, we use the video from eight common actions
between those two datasets for performance evaluation,
which leads to 548 RGB-D videos in the source domain,
and 1, 279 RGB videos in the target domain. All the
target domain samples are also used as unlabeled data
in the training stage for the baseline domain adaptation
methods and our DAM2S algorithms.

We extract the improved dense trajectory (IDT) fea-
tures for the RGB video clips from two datasets using
the source code provided in [46]. Specifically, three types
of space-time (ST) features (i.e., 96-dim Histogram of
Oriented Gradient, 108-dim Histogram of Optical Flow
and 192-dim Motion Boundary Histogram) are used. We
construct the codebook by using k-means clustering on
the ST features from all videos in the training dataset
to generate 2, 000 clusters, and then use the bag-of-
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words model representation for each type of ST fea-
tures. Finally, each video is represented as the 6, 000-dim
feature by concatenating the 2, 000-dim TF feature from
each type of ST features. For the depth video clips, we
use the same procedure to extract a 6, 000-dim depth
feature. Note that the codebooks for the visual and depth
features are different, so they cannot be treated as the
same features although their dimensions are the same.

Cross-View Human Action Recognition: We use
a recently released multi-view RGB-D action dataset
ACT42 [3] for our experiments, which contains 2, 648
RGB-D videos from 14 human actions captured by
Kinect from four different view points. To evaluate our
proposed algorithms, we use the RGB-D videos from
the first two views as the source domain, and use only
the RGB videos from the remaining two views as the
target domain, which leads to 1, 324 RGB-D videos in
the source domain, and 1, 324 RGB videos in the target
domain. Since the training and testing videos are cap-
tured from different views, there also exists considerable
domain distribution mismatch. We extract the IDT fea-
tures, and use the bag-of-words representation for the
RGB videos and depth videos with the same procedure
as in the cross-dataset setting. The other experimental
settings are also the same as in the cross-dataset setting.

We use the multiclass classification accuracy as the
evaluation criterion, which is the average of the ac-
curacies over all the classes. For all the kernel-based
approaches, Gaussian kernel is used as the default ker-
nel with the bandwidth parameter set as the mean of
the distances between any two samples. Moreover, we
empirically set µ = 105 for our two methods DAM2S_A
and DAM2S_B, and µ = 104 for our method DAM2S_C.
We also empirically set λ = 10−2 for DAM2S_A, λ = 100

for DAM2S_B, and λ = 101 for DAM2S_C. How to auto-
matically choose the optimal parameters for our methods
will be an interesting research issue in the future.
Experimental Results: The results of all methods in
three tasks are reported in Table 2. From this table, we
observe that our newly proposed DAM2S algorithms
outperform all other baseline methods in all three tasks.
It demonstrates the effectiveness of our DAM2S methods
by employing the additional depth features in the source
domain and simultaneously reducing the domain distri-
bution mismatch between the source and target domains.

Specifically, by utilizing the additional depth features,
the multi-view learning approaches KCCA and SVM2K
as well as the learning using privileged information
approach SVM+ achieve better results when compared
with the naive approach SVM A. Among these methods,
SVM2K achieves the best result, as it can more effectively
exploit depth information by learning two classifiers
for both visual and depth features. Nevertheless, all
these methods do not cope with the data distribution
mismatch between the source and target domains, thus
they are much worse than our three DAM2S algorithms.

The domain adaptation methods KMM, SGF, LMK,
TCA, SA and DIP are also better than SVM A, which

TABLE 3
Comparison of training time (seconds) for our three

DAM2S methods for the cross-dataset human action
recognition task.

DAM2S_A DAM2S_B DAM2S_C
Training Time 20.7 168.4 398.2

shows it is beneficial to reduce domain distribution mis-
match between the source and target domains by using
these methods. When compared with SVM A, DAM is
slightly worse, possibly because the multi-source do-
main adaptation method cannot effectively handle the
significant domain distribution mismatch with a single
source domain in this application. Moreover, our pro-
posed three DAM2S algorithms outperform all those
methods by additionally exploiting the depth features
in the source domain.

4.3 Comparison among three DAM2S methods
Performance Analysis: By comparing the performance
of our three methods in Table 2, we observe that the
results of DAM2S_A and DAM2S_B are generally compa-
rable. This indicates that when using the MMD based
regularizer to reduce the domain distribution mismatch,
the two strategies for incorporating the additional depth
features can lead to comparable results. Moreover, it is
interesting to observe that DAM2S_C is generally better
than DAM2S_A and DAM2S_B in most cases. However,
DAM2S_C is worse than the other two methods for the
task under the cross-view setting. We conjecture that this
is due to the significant domain distribution mismatch
in this cross-view setting. It is less effective to use the
SA based regularizer to learn a transformation matrix
around the prelearnt matrix T, when compared with
the MMD based regularizer that optimizes the projection
matrix directly based on the MMD criterion.

Time Comparison: We also report the training time of
those three methods in Table 3 by using the cross-dataset
human action recognition task as an example. From
Table 3, we observe that our DAM2S_A is more efficiency
than DAM2S_B and DAM2S_C in term of the training
time, because DAM2S_B and DAM2S_C need to iteratively
solve an SVM2K subproblem, which takes more time
than the SVM problem in DAM2S_A. Moreover, DAM2S_C
takes more iterations to converge when compared with
DAM2S_B, so the training time of DAM2S_C is longer.

Base on the above analysis, DAM2S_A is more suitable
for the applications with high requirements in training
speed, due to its good tradeoff between performance and
efficiency, while DAM2S_C should be a good choice for
the performance driven applications where the training
and test data are from different datasets.

5 CONCLUSIONS

In this paper, we have proposed a new framework for
recognizing RGB images/videos by learning from a set
of labeled RGB-D data. We formulate this task as a new
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TABLE 2
Comparison of accuracies (%) for objection recognition (OR), cross-dataset human action recognition (CD-HAR),

and cross-view human action recognition (CV-HAR).

SVM A SVM+ KCCA SVM2K KMM DAM SGF LMK TCA SA DIP DAM2S_A DAM2S_B DAM2S_C
OR 27.52 29.04 31.52 34.21 28.88 27.37 38.93 39.50 37.79 44.55 45.13 53.17 54.33 56.89

CD-HAR 19.17 22.03 22.84 26.57 21.03 19.32 26.25 18.56 26.79 29.56 28.46 30.64 31.75 39.17
CV-HAR 62.33 65.36 64.78 62.81 62.39 61.41 59.18 63.28 52.95 64.90 62.73 68.86 68.85 65.56

unsupervised domain adaptation problem, in which we
have both visual and depth features in the source do-
main, while we only have the visual features in the target
domain. We propose three DAM2S algorithms to address
this new problem by taking advantage of the additional
depth features in the source domain and simultaneously
reducing data distribution mismatch between the source
and target domains. Comprehensive experiments for ob-
ject recognition, cross-dataset human action recognition
and cross-view human action recognition have clearly
demonstrated the effectiveness of our proposed three
DAM2S approaches for recognizing RGB images and
videos by learning from RGB-D data.
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