

Co-Labeling: A New Multi-view Learning Approach for Ambiguous Problems

presented by Wen Li, 12-Dec-2012

Wen Li, Lixin Duan, Ivor W.-H. Tsang, and Dong Xu *Centre for Multimedia and Networks (CeMNet) School of Computer Engineering, Nanyang Technological University, Singapore*

Outline

- Motivations
- Problem
 - Ambiguous problem
 - Multi-view ambiguous problem
- Solution
 - The co-labeling algorithm
- Experimental results
 - Documents/Webpage Classification
 - Web Image Retrieval

Motivations

- Data are cheap but labeling them is expensive.
 - It is easy to collect a mass of images from the web, but is hard to label all of them.
 - A lot of learning models have been proposed to cope with less supervision, such as semi-supervised learning, multiple instance learning and clustering.
- Data are usually represented in multiple forms.
 - Different features can be easily extracted from an image, such as SIFT, HOG, LBP, etc.
 - Multi-view of features can enhance the performance and help us to reduce the supervision (for example, co-training).

Semi-supervised Learning (SSL)

Multi-Instance Learning (MIL)

Clustering

Ambiguous Learning

• Ambiguous learning is to learn from some training samples and a set of label candidates.

Ambiguous Learning: Formulation

• Based on the regularized empirical risk minimization principle:

$$\min_{f,\mathbf{y}\in\mathcal{Y}} \|f\|^2 + C\sum_{i=1}^n l(f,\mathbf{x}_i,y_i)$$

- f is the target classifier, l(.) is the loss function.
- y is a label candidate, and ${\mathcal Y}$ is the label candidate set:
 - Semi-supervised Learning (SSL):

$$\mathcal{V} = \{\mathbf{y} | y_i = g_i, i = 1, \dots, l; \sum_{i=l+1}^n y_i = \sigma\}$$

- Multiple Instance Learning (MIL)

$$\mathcal{Y} = \{ \mathbf{y} | \sum_{\mathbf{x}_i \in \mathcal{B}_I} \frac{y_i + 1}{2} \ge 1, \text{if } Y_I = 1; y_i = -1, \text{otherwise} \}$$

- Clustering:

$$\mathcal{Y} = \{\mathbf{y} | \sum_{i=1}^{n} y_i = \sigma\}$$

Multi-view Ambiguous Learning

- Multi-view ambiguous learning is to learn from multi-view training samples and a set of label candidates.
- Multi-view of features can enhance the performance and help to reduce the ambiguities.

Multi-view AL: Formulation

$$\min_{f^v, \mathbf{y}^v \in \mathcal{Y}^v} \sum_{v=1}^V \left(\|f^v\|^2 + C \sum_{i=1}^n l(f^v, \mathbf{x}^v_i, y^v_i) \right)$$

• Terms:

 $-f^v$ is the classifier on the *v*-th view

 $-\mathcal{Y}^{v}$ is a *small label candidate set* on the *v*-th view

- Key problem
 - How to construct a small label candidate set for each view.

Co-Labeling:

A new multi-view ambiguous learning approach

Review of Co-training: Feed samples

Two-view labeled data

Two-view unlabeled data

- 1. Training two classifier using labeled data on two views,
- 2. Predict the unlabeled data, and select a fixed number of samples which are *confident in one view* but *unconfident in the other view*.
- 3. Label the selected samples and merge them into the labeled set, and then retrain the classifiers.
- 4. Repeat the above 3 steps.

Review of Co-training: Feed samples

- Highlight:
 - Using the classifier on one view to enhance the classifier on the other view by feeding samples.
- Limitations:
 - The selecting of samples cannot be applied to the training data associated with structures (MIL).
 - If the selected samples are incorrectly labeled, it may do harm to the classifiers trained in the following iterations.

Co-Labeling: Feed the labeling

Label candidate sets

- 1. Training two classifiers on two views,
- 2. Predict the ambiguous training data.
- 3. Update the label candidate set by using the predictions (decision values on training data) from other views.
- 4. Repeat the above 3 steps.

Co-Labeling: Three Strategies to construct the label candidate set

Strategy 1: $\mathcal{Y}_{t+1}^v = \bigcup_{p \neq v}^V o_t^p$ where o_t^p is obtained by projecting the decision value from the p-th view (i.e., z^p) into the feasible set \mathcal{Y} defined by the constraints on the ambiguous training samples.

- The label candidate set is generated by using the prediction from classifier of another view, which is consistent with the philosophy that using one view to help another.
- The projection operation makes the label candidate to satisfy the constraints.
- The projection operation only needs to rank the decision values, which is very efficient.

Co-Labeling: Three Strategies to construct the label candidate set

Strategy 2: $\mathcal{Y}_{t+1}^v = (\bigcup_{p \neq v}^V o_t^p) \bigcup \mathcal{Y}_t^v$ where o_t^p is obtained in the same manner as in Strategy 1.

Decision values from f_2 +1-1 -1 +10.87 -1.04 0.98 -0.93 -1 -1 -1 +1Projection Add into +1-1 +1-1 . . .

• If one sample is miss-labeled at one iteration, then it may be corrected by the label candidates obtained from other iterations.

Label candidate set on view-1

Co-Labeling: Three Strategies to construct the label candidate set

Strategy 3: $\mathcal{Y}_{t+1}^v = (\bigcup_{p \neq v}^V \mathcal{O}_t^p) \bigcup \mathcal{Y}_t^v$ where \mathcal{O}_t^p is a set of label candidates obtained in the same manner as in Strategy 1 from the predictions with different biases.

Label candidate set on view-1

Co-Labeling: Detailed Formulation

• Multi-view ambiguous learning:

$$\min_{f^v, \mathbf{y}^v \in \mathcal{Y}^v} \sum_{v=1}^V \left(\|f^v\|^2 + C \sum_{i=1}^n l(f^v, \mathbf{x}^v_i, y^v_i) \right)$$

• Based on the rho-SVM and squared hinge loss:

$$\min_{\mathbf{y}^{v} \in \mathcal{Y}^{v}} \min_{\mathbf{w}^{v}, b^{v}, \rho^{v}, \xi_{i}} \quad \frac{1}{2} \left(\|\mathbf{w}^{v}\|^{2} + b^{v\,2} + |C\sum_{i=1}^{n} \xi_{i}^{2} \right) - \rho^{v},$$

s.t. $y_{i}^{v}(\mathbf{w}^{v'}\phi(\mathbf{x}_{i}^{v}) + b^{v}) \geq \rho^{v} - \xi_{i}, \ i = 1, \dots, n,$

• Terms:

– The classifier:
$$f^v(\mathbf{x}^v) = w^{v\,\prime}\mathbf{x}^v + b^v$$

Co-Labeling: An MKL Solution

• We write the dual form as:

$$\min_{\mathbf{y}\in\mathcal{Y}}\max_{\boldsymbol{\alpha}\in\mathcal{A}}-\frac{1}{2}\boldsymbol{\alpha}'\left(\mathbf{K}\circ\mathbf{y}\mathbf{y}'+\frac{1}{C}\mathbf{I}\right)\boldsymbol{\alpha}_{1}$$

• Convex relaxation by using the linear combination of label candidates, which results in an MKL problem.

$$\min_{\mathbf{d}\in\mathcal{D}}\max_{\boldsymbol{\alpha}\in\mathcal{A}} \quad -\frac{1}{2}\boldsymbol{\alpha}'\left(\sum_{t=1}^{|\mathcal{Y}|} d_t\mathbf{K}\circ\mathbf{y}_t\mathbf{y}_t' + \frac{1}{C}\mathbf{I}\right)\boldsymbol{\alpha}$$

• Final classifier:

$$f(\mathbf{x}) = \sum_{v=1}^{V} f^{v}(\mathbf{x}^{v}) = \sum_{v=1}^{V} \frac{1}{\rho_{v}} \left(\sum_{i=1}^{n} \alpha_{i}^{v} \sum_{t=1}^{|\mathcal{Y}^{v}|} d_{t}^{v} y_{t,i}^{v} (k(\mathbf{x}_{i}^{v}, \mathbf{x}^{v}) + 1) \right)$$

Co-Labeling: The Algorithm

- We summarize the algorithm as follows:
 - Initialize the label candidate set for each view.
 - Repeat: (for each view)
 - Solve the MKL problem.
 - Use the learnt classifier to predict the training samples.
 - Obtain a set of label candidates for each view by projecting decision values from other views into feasible labeling set with different biases.
 - Add the new label candidates into the label candidate set and retrain the classifiers.
 - Until the stop criterion is reached.

Co-Labeling vs Co-Training

Experimental Results

- Document/Webpage Classification (SSL)
 - Dataset: WebKB
 - BBC, BBCSports
- Image Retrieval (MIL)
 - NUS-WIDE dataset.

Experiments: Document Classification

	BBC			BBCSport		
1.1/0700-0	View1	View2	View1+2	View1	View2	View1+2
SVM	66.53(4.08)	63.11(3.67)	74.26(3.37)	70.69(3.42)	66.43(3.98)	76.99(3.76)
TSVM	71.99(5.48)	66.83(3.54)	75.72(3.16)	74.62(5.73)	65.51(3.36)	79.21(6.43)
Co-LapSVM	70.30(3.39)	68.04(4.56)	76.97(3.41)	70.70(3.43)	66.43(3.99)	77.14(3.29)
2V-TSVM	52.70(3.96)	52.61(5.34)	58.39(5.25)	64.00(3.08)	63.50(3.86)	69.82(3.78)
PMC		5	71 57(6 37)			79 48(5 41)
Co-Labeling	78.41(3.79) ↑	77.61(3.01) ↑	81.37(3.14) ↑	82.10(5.41) ↑	79.60(4.44) ↑	84.22(5.11) ↑

- On BBC and BBCSport (MAP):
 - Co-Labeling is significantly better than other methods on the combined results as well as on each view.
- On WebKB (PRBEP):
 - Co-Labelling also gets the best combined result.
 - The improvement is not significant possibly because it is already a very high performance (it is 99.11% in the measurement of MAP)

	WebKB		
Later Spec	page	link	page+link
SVM	74.4	77.8	84.4
TSVM	85.5	91.4	92.2
Co-LapSVM	94.3	93.3	94.2
2V-TSVM	85.7	86.7	87.3
PMC			88.6
Co-Labeling	92.5	93.1	95.1

Experiment: Web Image Retrieval

- On NUS-WIDE (MAP)
 - View-1: text + global visual features (color, etc.)
 - View-2: text + SIFT feature with LLC coding.

		TG	TL	TG+TL
N	AIL-CPB	61.43	57.84	77.07
ľ	ni-SVM	59.25	59.26	77.18
	sMIL	60.01	62.09	75.48
Co	-Labeling	62.56	61.71	79.09

- Our method also gets the best result.

Experiments: Convergence & Time

Converge fast. Usually no more than 10 rounds.

Comparison of training time

	BBC	BBCSport	WebKB
Co-LapSVM	52.45	2.136	16.69
2V-TSVM	1108	497.3	446.4
PMC	30.64	7.215	55.41
Co-Labeling	36.50	5.111	21.27

Comparable with other methods in terms of training time

Summary

• People always say that

A general algorithm can hardly beat a specific designed one,

• But I would argue

Except you have found the key to the problem.

- Conclusion
 - An *general* multi-view learning method which unifies and outperforms the traditional semi-supervised learning and multi-instance learning.
 - Where the key is the perspective from *label candidates*.

