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Abstract—We propose a multi-view learning approach called
co-labeling which is applicable for several machine learning
problems where the labels of training samples are uncertain,
including semi-supervised learning (SSL), multi-instance learn-
ing (MIL) and max-margin clustering (MMC). Particularly, we
first unify those problems into a general ambiguous problem
in which we simultaneously learn a robust classifier as well as
find the optimal training labels from a finite label candidate set.
To effectively utilize multiple views of data, we then develop
our co-labeling approach for the general multi-view ambiguous
problem. In our work, classifiers trained on different views can
teach each other by iteratively passing the predictions of train-
ing samples from one classifier to the others. The predictions
from one classifier are considered as label candidates for the
other classifiers. To train a classifier with a label candidate set
for each view, we adopt the Multiple Kernel Learning (MKL)
technique by constructing the base kernel through associating
the input kernel calculated from input features with one label
candidate. Compared with the traditional co-training method
which was specifically designed for SSL, the advantages of our
co-labeling are two-fold: 1) it can be applied to other ambiguous
problems such as MIL and MMC; 2) it is more robust by using
the MKL method to integrate multiple labeling candidates
obtained from different iterations and biases. Promising results
on several real-world multi-view data sets clearly demonstrate
the effectiveness of our proposed co-labeling for both MIL and
SSL.
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I. INTRODUCTION

In many real world applications, it is generally difficult
to obtain a sufficient number of labeled samples to learn
robust classifiers. Therefore, researchers have been exploit-
ing various learning scenarios by learning from ambiguous
data whose labels are uncertain but under certain constraints.
Taking document classification as an example, it is usually
convenient to collect a large number of unlabeled docu-
ments; however, it is too costly to annotate all of them with
correct labels. A practical way is to train the classifier by
using only a small number of labeled documents together
with a large number of unlabeled documents, which is
also known as semi-supervised learning (SSL). Usually, the
unlabeled samples in SSL are associated with a balance
constraint to avoid biased solutions. Another example is the
text-based web image retrieval (TBIR) [17], [12]. Given
a textual query, relevant images are retrieved based on
the noisy textual description associated with each image.

However, not all relevant images are truly positive with
respect to the semantic meaning of the textual query. Li
et al. [17], [18] grouped relevant images into bags such that
it is of high probability that each bag contains some truly
positive images. Based on that, the TBIR task was modeled
as a Multi-Instance Learning (MIL) problem, in which only
the label of each bag is known and the labels of images in
each bag remain unknown. In the literature, other learning
scenarios (such as max-margin clustering (MMC) [28] and
semi-supervised multi-instance learning (SSMIL) [20]) have
also been widely studied to exploit ambiguous data. Howev-
er, these existing methods were specifically designed for a
certain learning scenario. In this paper, we generalize those
learning scenarios as a unified ambiguous problem to utilize
the various kinds of ambiguous data.

When multiple views of features are available, the in-
formation from different views can be effectively utilized
to improve the performance for the learning task. As one
pioneering work on multi-view learning, co-training [4] was
proposed to solve the two-view SSL problem by simulta-
neously learning two classifiers on the two-view training
data. Those two classifiers teach each other by iteratively
annotating a certain amount of unlabeled data and putting
them into the labeled training set. However, the co-training
was specifically designed for SSL. It is difficult to apply
to other learning problems such as MIL, since the sample
selection process may violate the bag constraints in MIL
(see Section III-A for a detailed discussion on co-training).
Other work on multi-view SSL or multi-view clustering can
also be found in [23], [16], [14], [15]. While those multi-
view learning methods have shown advantages of utilizing
multi-view information, they are all limited to a particular
learning scenario and cannot be used to solve the general
ambiguous problem with multi-view training data.

In this work, we address the general ambiguous problem
from a multi-view perspective. First, the ambiguous data
contain some samples with uncertain labels that satisfy some
constraints (for example the bag constraints in MIL and the
balance constraint in SSL), which means there are many
possible labelings for the training samples. Therefore, the
ambiguous learning problem can be treated as a task of
learning from the training samples associated with a labeling
set which contains many possible labelings. We call each
labeling as a label candidate and the labeling set as the



label candidate set. It can be verified that the traditional
SSL, MIL and MMC are special cases of our ambiguous
learning problem with different constraints on the labeling.
A comparison between the traditional supervised learning
and the ambiguous learning is illustrated in Figure 1.

In the multi-view scenario, we can also model the learning
problem of each view as an ambiguous problem. To have
different views teach and learn from each other, we propose
a “co-labeling” approach to solve the multi-view ambiguous
problem, in which the classifier on one view can help the
classifiers on the other views by sharing the labeling of
training samples. Specifically, we first train a classifier on
each view and obtain the predictions of training samples
using those classifiers. Then, those predictions are projected
into the feasible label candidate set to guarantee that the
constraints are satisfied. After that, the label candidate set
of each view is updated by merging the label candidates from
the predictions of the classifiers on the other views. We also
generate different predictions by varying the bias to enhance
the robustness. This process is repeated until the stop cri-
terion is reached. Compared with the co-training, in which
different views select and label the training samples to help
each other, the advantages of our co-labeling are twofold: 1)
By sharing label candidates instead of selecting samples, our
co-labeling can be applied to the general ambiguous problem
with various constraints on the training labels. 2) By using
the label candidates from different iterations and biases, our
co-labeling can cope with possible mistakes in labeling and
enhance robustness.

To learn from a label candidate set, we formulate a
max-margin based model and then relax it to an MKL
problem, which can be easily solved by existing MKL
solvers [21], [30]. We also give the convergence analysis and
the time complexity analysis. Finally, we conduct extensive
experiments for multi-view SSL and multi-view MIL as well
as some detailed experiential analysis.

Our main contributions are summarized as follows:

• From the perspective of label candidates, we formu-
late a general single-view ambiguous learning problem
which unifies the traditional SSL, MIL, MISSL and
clustering into one formulation.

• With the ambiguous learning formulation, we propose
a new multi-view approach called co-labeling to solve
the general multi-view ambiguous problem. To our
knowledge, this is the first work to study the general
multi-view ambiguous problem. An MKL solution is
also developed to instantiate the proposed co-labeling
approach.

• Taking the examples of SSL with its application on
webpage/document classification and MIL with its ap-
plication on text-based image retrieval, we demonstrate
the effectiveness of our proposed co-labeling and also
present extensive experimental analysis.

Figure 1. Illustration of the difference between supervised learning
and ambiguous learning. Yellow circles denote the training samples, red
crosses denote a positive label and blue strips denote a negative label. The
green dashed rectangles that include red crosses and blue strips denote the
labeling for training samples. Left: The labeling (green dashed rectangles)
of training samples (yellow circles) in supervised learning is fixed. Right: In
ambiguous learning, the labelings of training samples are uncertain, so the
task is to learn a robust classifier from the training samples ({x1, . . . ,xn})
and a set of label candidates ({y1, . . . ,yT }).

II. AMBIGUOUS LEARNING FROM LABEL CANDIDATES
PERSPECTIVE

In ambiguous learning, the training samples have un-
certain labels that satisfy some constraints (for example,
the bag constraints in MIL and the balance constraint in
SSL), and the learning task is to learn a classifier based on
those training samples as well as a label candidate set. In
this work, we focus on the binary classification problem.
Formally, let X = {xi|i = 1, . . . , n} be the set of training
samples where n is the total number of training samples.
We use y = [y1, . . . , yn]

′ to represent a possible labeling
(label candidate) where yi ∈ {+1,−1} is the label of the
i-th training sample. Then the label candidate set can be
represented as Y = {yt|t = 1, . . . , T} where yt is the
t-th label candidate and T = |Y| is the total number of
label candidates. We also use g = [g1, . . . , gn]

′ to represent
the unseen ground-truth label vector of the training samples
where gi ∈ {+1,−1} is the ground truth label of the i-th
training sample.

A comparison of supervised learning and ambiguous
learning is given in Figure 1. While in supervised learning
the labeling of training samples y is known (see the left
part of Figure 1), in ambiguous learning there are many
possibilities on the labeling of training samples and the
learning task is to learn a robust classifier from a set of
label candidates (see the right part of Figure 1)). Based on
the regularized empirical risk minimization principle [24],
we formulate the ambiguous learning task as follows:

min
f,y∈Y

∥f∥2 + C
n∑

i=1

ℓ(f,xi, yi), (1)

where Y is the label candidate set, f is the target classifier,
and ℓ(·) is the loss function.



The major difference between the ambiguous learning and
the traditional supervised learning is that we need to infer
the underlying labels vector y for training samples while
learning the classifier. This is a non-trivial task since the
cardinality of the label candidate set (i.e. T ) is of a size
exponential in terms of n. However, in Section III, we
develop a simple but effective way to construct a small
label candidate set in the multi-view scenario instead of
using all possible label candidates. Then we give the detailed
form of f and ℓ(·) and formulate it as an MKL problem in
Section IV. Here we provide some examples to show that
several existing learning scenarios are actually special cases
of our ambiguous learning.

Multi-Instance Learning: In Multi-Instance Learn-
ing [1], [17], [18], the training samples (instances) are
organized into different sets (bags). The label of each
training bag is known but the labels for the instances in
the bag are unobserved. Usually the constraints on training
samples are that all instances in the negative bags are
negative and at least one instance in each positive bag is
positive. Let us use BI to denote the I-th training bag
and YI to denote the corresponding bag label, then the
constraints on the training samples can be represented as∑

xi∈BI
(yi+1)/2 ≥ 1 ifYI = 1 and yi = −1 otherwise [1].

In [17], more general constraints on positive bags were
proposed by requiring at least a portion of each positive
bag to contain positive instances. An iterative approach was
used in [1] to infer the labeling y and an MKL formulation
was used in [17] to learn the classifier by optimizing the
labeling in the label candidate set.

Semi-supervised Learning: In semi-supervised learn-
ing [6], [33], the training data include a limited number of
labeled samples and a large number of unlabeled samples.
Usually, the unlabeled samples are required to satisfy a bal-
ance constraint. It can also be formulated into our ambiguous
learning formulation. Formally, suppose there are l labeled
training samples and n− l unlabeled training samples, then
the constraints can be represented as yi = gi for i = 1, . . . , l
and

∑n
i=l+1 yi = σ where σ is a predefined parameter

for the balance constraint. Existing semi-supervised learning
algorithms cannot directly solve this formulation because the
number of label candidates is too large, but we will show
in the multi-view scenario how to learn with a small set of
label candidates in the next section.

III. MULTI-VIEW AMBIGUOUS LEARNING FROM LABEL
CANDIDATES PERSPECTIVE

In the multi-view learning, each training sample is repre-
sented with different views of features. Formally, the training
sample xi is in the form of (x1

i , . . . ,x
V
i ) where xv

i is
the feature in the v-th view and v = 1, . . . , V . Typically,
a classifier fv is trained on the v-th view and the final
classifier is fused by using the classifiers from all views,
i.e. f(x) = 1

V

∑V
v=1 f

v(xv).

We have formulated the single-view ambiguous learning
as a learning problem that simultaneously optimizes the
classifier f and the unknown training labels y. In this
section, we show that the multi-view learning can also be
treated as a problem of learning from the label candidate
set, and then we extend the single-view ambiguous learning
to the multi-view scenario.

A. Feed Samples: A Review of Co-training

One of the pioneering works on multi-view learning is
the co-training approach [4]. It was designed for semi-
supervised learning problems with two views. Let us assume
the labeled and unlabeled training sets are L0 and U0. Two
classifiers f1

0 and f2
0 are trained on two views respectively

using the initial labeled training set L0. Then two sets of
unlabeled training samples L̃1

0 and L̃2
0 are selected from the

unlabeled set according to the prediction confidence, and
are labeled as positive or negative by the two classifiers
respectively. After that, the labeled training set is enlarged
by merging the newly labeled data, i.e. L1 = L0

∪
L̃1
0

∪
L̃2
0

and the two classifiers are retrained on the enlarged labeled
set. Such processes are repeated until a fixed number of
iterations is reached.

The co-training can be seen as a process of iteratively
feeding newly labeled training samples to each view. The
classifiers of two views can be improved if the following
assumptions hold: each view is sufficient to train a low-error
classifier and both views are conditionally independent. The
first assumption guarantees that the newly labeled samples
are accurately labeled with high confidence and the second
one ensures that the samples selected by one view are helpful
to the other view. However, those assumptions usually do not
strictly hold for real-world data. Therefore, many theoretical
works on co-training from different perspectives tried to
relax those assumptions, such as weak dependence [2], α-
expansion [3], large diversity [26]and label propagation [27].

Although co-training has been applied in many applica-
tions, there are two major limitations which limit it from
broader applications. First, it was specifically designed for
SSL and cannot be used when there are other constraints
on the unlabeled data. For example, in MIL, the data are
provided in the form of bags, and directly using the sample
selection strategy on instances may violate the constraints on
bags. Second, the labels of the selected unlabeled data are
fixed once they are labeled. If the classifier fv is not robust
enough to make accurate predictions, the wrongly labeled
data will be propagated to subsequent retraining processes,
which may significantly degrade the robustness of retrained
classifiers.

B. Feed Label Candidates: The Co-Labeling Approach

Based on the general ambiguous problem formulation
in (1), we propose our new multi-view approach for general



ambiguous learning problems as:

min
fv,yv∈Yv

V∑
v=1

(
∥fv∥2 + C

n∑
i=1

ℓ(fv,xv
i , y

v
i )

)
, (2)

where fv is the classifier on the v-th view, and Yv is the
label candidate set which is constructed by utilizing the
predictions from the other views.

The algorithm of our multi-view approach is depicted in
Algorithm 1. Different from co-training which iteratively
updates the labeled training set by feeding newly labeled
training samples, we let one view to help another by feeding
its predictions to update the label candidate sets of another
view. Therefore, we refer to this approach as co-labeling.
How to update the candidate set of one view using the
predictions from the other views (i.e. line 5 in Algorithm 1)
is the key of our co-labeling approach. To better illuminate
the updating strategy, we detail it step by step by presenting
three strategies, each of which is an improved version of the
previous one. Denoting the label candidate set of the v-th
view at the t-th iteration as Yv

t , we give the first strategy as
follows:
Strategy 1: Yv

t+1 =
∪V

p ̸=v o
p
t where opt is obtained by

projecting the decision value from the p-th view (i.e., zp)
into the feasible set Y defined by the constraints on the
ambiguous training samples.

In other words, the label candidate set is constructed by
using the latest prediction from the other views. In this way,
we treat the label vector as a whole which allows us to easily
enforce the training labels to satisfy any constraints such as
the bag constraints in MIL and the balance constraint in SIL
and MMC. Therefore, the co-labeling does not have the first
limitation of the co-training.

However, the second limitation has not been addressed
yet. The classifiers may also be degraded if the label
candidates are not accurate at one iteration and do harm
to the classifiers trained at the next iteration. To improve
robustness, instead of only using the latest prediction, we
propose to construct the label candidate set for each view
using the predictions of the other views from all previous
iterations, which is formally stated in the following strategy:

Strategy 2: Yv
t+1 = (

∪V
p ̸=v o

p
t )
∪
Yv
t where opt is obtained

in the same manner as in Strategy 1.
With this strategy, the label candidate set of each view is

augmented as the number of iterations increases. If the newly
obtained label candidates are not accurate, it is still possible
to learn a classifier with the label candidates obtained from
previous iterations. In other words, when the label candidates
obtained from different iterations are not consistent, rather
than using the latest one, we leave them to the learner to
make the choice.

However, what if the label candidates from different iter-
ations are consistent but wrong? This possibly happens for
ambiguous learning problems since the learned classifiers in

Algorithm 1 The Co-Labeling Algorithm
Require: Training samples with V views, initial labels y0.
Ensure: Classifier fv’s.

1: Initialize the label candidates set Yv = {y0} for each
view.

2: repeat
3: Train a classifier fv based on Yv on each view.
4: Get the prediction zv of the training examples using

fv on each view.
5: Update the label candidate Yv using zp’s for p ̸= v.
6: until The stop criterion is reached.
7: return fv’s.

ambiguous problems are easily biased. For example, in MIL,
one common approach is to initialize all the instances in
positive bags to positive training samples, which makes the
classifier more likely to predict the negative samples to be
positive. Besides this, in SSL, the limited number of labeled
data also easily cause the classifier to be biased. To handle
this bias problem, instead of only using one prediction with
fixed bias, we use multiple predictions with different biases
to generate the label candidates, as inspired by the recent
work on domain adaptation [22]. In other words, at the t-th
iteration, instead of only obtaining one new label candidate
opt from the p-th view (see Strategy 2), the v-th view can
obtain a set of new label candidates based on predictions
with different biases. In implementation, it simply involves
adding different biases to the original decision values zv for
MIL or varying σ in the balanced constraint for SSL. We
formally introduce the new strategy as follows:

Strategy 3: Yv
t+1 = (

∪V
p̸=v O

p
t )
∪
Yv
t where Op

t is a set of
label candidates obtained in the same manner as in Strategy
1 from the predictions with different biases.

C. Discussion

We give a brief discussion of our co-labeling approach
with respect to the co-training method in the SSL setting
with a toy problem shown in Figure 2. View 1 contains
two-moons data and View 2 contains two clusters. We have
one positive sample and one negative sample denoted by the
blue triangle and the red circle, respectively. The magenta
and black rectangles denote the unlabeled samples in the
two classes.

Suppose we use SVM as the base classifier for the co-
training. In the first iteration, the co-training trains one
classifier for each view using the labeled samples. We plot
the decision boundaries of two views in Figure 2. It can be
observed that the classifier trained on View 1 is not good
since we only have two training samples. And next, in the
sample selection step, the samples located at the tails of the
two moons will be selected since they are farthest from the
decision boundary. However, they are wrongly labeled and
will degrade the classifiers trained in the next iteration.
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Figure 2. The toy data with two views. Blue triangles denote labeled
positive samples and red circles denote labeled negative samples. The
magenta/black rectangles denote unlabeled samples in the two classes.

In contrast, our co-labeling does not suffer from this prob-
lem since the wrongly labeled samples will be corrected by
other label candidates from different iterations and different
biases. The final prediction results of two methods are shown
in Section VI. Besides the robustness of our co-labeling
approach, it also can be readily applied on other ambiguous
learning scenarios such as MIL and MMC.

IV. THE IMPLEMENTATION OF CO-LABELING

We have proposed a uniform formulation of ambiguous
learning and a new multi-view algorithm in the last section,
both of which require learning a classifier (i.e. the f in
Equation (1)) from a label candidate set. In this section, we
give the detailed forms of f and ℓ(·), and relax the problem
to an MKL problem which can be solved easily with existing
solvers.

A. The Formulation
We adopt the maximum margin classifier f(x) =

w′ϕ(x) + b where ϕ(·) is the feature mapping function,
and use ρ-SVM with the squared hinge loss1 to solve the
ambiguous learning problem. Based on (2), we arrive at the
following optimization problem for the v-th view:

min
yv∈Yv

min
wv,bv,ρv,ξi

1

2

(
∥wv∥2 + bv 2 + C

n∑
i=1

ξ2i

)
− ρv,

(3)

s.t. yvi (w
v′
ϕ(xv

i ) + bv) ≥ ρv − ξi, i = 1, . . . , n,

where C is the tradeoff parameter, 2ρv/∥wv∥ defines the
margin and yi is the i-th element of the label vector y.
The superscript v denotes the v-th view, in other words, we
shall optimize the above objective function on each view. For
simplification, we omit the superscript v unless necessary.

B. The MKL solution
By introducing the dual variable α = [α1, . . . , αn]

′ for
the constraints in (3), we derive the dual problem of (3) as:

min
y∈Y

max
α∈A

−1

2
α′
(
K ◦ yy′ +

1

C
I

)
α, (4)

1 It has been suggested in [31] that the squared hinge loss is more robust
than the hinge loss for solving the MMC problem.

where K = K̂ + 11′, K̂ = [k(xi,xj)] = [ϕ(xi)
′ϕ(xj)] is

the kernel matrix, and A = {α|α ≥ 0,α′1 = 1} is the
feasible set of α.

Instead of directly solving the mixed-integer problem
in (4), we seek to optimize the linear combination of yy′’s.
Then, the above problem is relaxed to an MKL problem
which is a lower bound of (4). The relaxed formulation is
as follows:

min
d∈D

max
α∈A

−1

2
α′

 |Y|∑
t=1

dtK ◦ yty
′
t +

1

C
I

α, (5)

where d is a vector of combination coefficients for the
base kernels K ◦ yty

′
t’s, and D = {d|d ≥ 0,d′1 = 1}

is the feasible set of d. For more details about the above
relaxation, please refer to [17], [18], [19]. Note that the Y
is the label candidate set on each view, and its cardinality
equals the number of iterations in Algorithm 1, which is very
small. Therefore it can be efficiently solved by existing MKL
solvers [30]. Although [17], [18], [19] also formulated the
MMC and MIL problem as an MKL problem in a similar
way, they are single-view approaches and the motivations
are totally different. Moreover, in their methods, the label
candidates were obtained by iteratively finding the most
violated constraint, which is another NP-hard problem.

After solving the MKL on each view, the final classifier
is given by:

f(x)=

V∑
v=1

fv(xv)=

V∑
v=1

1

ρv

 n∑
i=1

αv
i

|Yv|∑
t=1

dvt y
v
t,i(k(x

v
i ,x

v) + 1)

 .

It is worth noting that the prediction is as fast as the SVM
prediction on each view.

C. The Algorithm

We summarize our detailed algorithm in Algorithm 2. The
initial labels y0 are problem dependent. For example, in SSL
we can use the prediction of the classifier trained on the
labeled data and in MIL we usually initialize all instances
in positive bags as positive and all instances in negative
bags as negative. After the initialization, the classifier will
be trained on each view by solving (5). Then we use the
classifier on each view to predict the labels of training
samples, and obtain a set of predictions by varying the bias.
All the predictions are required to satisfy the constraints
(i.e, bag constraints in MIL or balance constraint in SSL).
Finally the label candidate set of each view is augmented by
merging the predictions from the other views. This process
is repeated until the stop criterion is reached.

The Constraints: We use a simple method to force the
prediction to satisfy the constraints on ambiguous data. Two
typical constraints are discussed in Section II which are
commonly used in SSL and MIL. We first sort the decision
values of all training samples in descending order. The labels
for labeled samples are assigned using their ground-truth



Algorithm 2 The Algorithm of Co-Labeling with MKL
Require: Training samples with V views, initial labels y0.
Ensure: Classifier variables dv’s, αv’s and label candidate

sets Yv’s.
1: Initialize the label candidates set Yv = {y0} for each

view.
2: repeat
3: Solve αv and dv in (5) based on Yv.
4: Get the decision values of training data zv using αv

and dv.
5: Vary the biases to obtain a set of decision values Zv

for each view.
6: Get the label candidate set Ov by enforce each

prediction in Zv to satisfy the constraints.
7: Set each Yv = Yv ∪ Op for any p ̸= v.
8: until The stop criterion is reached.
9: return αv’s, dv’s and Yv’s.

training labels. For the remaining training samples, in SSL
we simply label the first m samples as positive and the
remaining as negative where m is determined by the balance
constraint, and in MIL we label the first mI instances in
the I-th positive bag as positive and the remaining as the
sign of their decision values where mI is determined by the
constraint on the I-th positive bag. It can be verified that
in this way the constraints discussed in Section II can be
satisfied.

Stop Criterion: One observation is that the objective
value in Algorithm 2 decreases monotonously on each view.
The reason is as follows: We solve an MKL problem which
minimizes the objective function in (5) with respect to αv

and dv . Since the label candidate set Yv is augmented at
each iteration, in the worst case the optimal solution of MKL
at the current iteration should be the same as that at the
last iteration by setting the entries in the coefficient vector
dv corresponding to the newly added label candidates to
zeros. Therefore the objective values of MKL on each view
should decrease monotonicly as the number of iterations
increases. Experimental results of convergence are presented
in Section VI-B4. So the stop criterion in the co-labeling
is that the difference of the objective values between two
iterations is less than a small value on all views or the
maximum number of iterations is reached. Usually, we
observe thast the algorithm runs fast and stops in fewer than
10 iterations.

Time Complexity: The main cost in Algorithm 2 is
the training process of MKL and the testing process on
the training samples. Since the kernel was computed in
the training process, the testing process is only a matrix
multiplication operator and the cost can be ignored compared
with the training process. Considering the non-linear case,
let us denote the complexity of training an MKL as O(MKL)

2 and suppose our algorithm runs T iterations, then the total
time complexity of Algorithm 2 is T · V · O(MKL) where
V is the total number of views. For the linear case, there
exists a fast algorithm to solve the SVM problem in the
primal form, so our co-labeling can be much faster than in
the non-linear case.

V. RELATED WORK

Our work is related to multi-view learning. As the
pioneering work on multi-view learning, Blum and Mitchell
[4] introduced the co-training approach for semi-supervised
learning. The original assumption of co-training that two
views are conditionally independent is too strong for real
applications. Therefore, different explanations were pro-
posed to analyze co-training under more relaxed assump-
tions such as weak dependence [2], α-expansion [3], large
diversity [26] and label propagation [27]. In [23], a co-
regularization approach was proposed to minimize the dis-
agreement of the classifiers of two views. Christoudias et
al. [9], [10] studied the co-training problem with noisy ob-
servations and Li et al. [16] extended the transductive SVM
with co-regularization. Recently, Chen et al. [7] proposed a
feature decomposition approach for co-training when only
one single view exists and recent work [14], [15] extended
the co-training and co-regularization to multi-view spectral
clustering. However, those works are restricted in the multi-
view semi-supervised setting or were specifically designed
for certain cases. In contrast, our co-labeling approach is a
general learning framework for multi-view learning on any
data with ambiguous labels and different constraints.

Our work is also related to the various cases of ambiguous
learning. More work on semi-supervised learning was sum-
marized in [33] and on multiple instance learning in [32].
For max-margin clustering, readers can refer to [28], [31]
and [19]. We also aware that the recent work [29] proposed
a kernel learning framework which also unifies different
ambiguous learning scenarios, however, it only discussed the
single-view case. The most related work are LGMMC [19]
and MIL-CPB [17]. The MKL algorithm was also used in
the two papers to solve the learning problem. However,
our proposed approach is intrinsically different with these
two works. Our co-labeling approach is motivated from co-
training and aims to study how to effectively utilize the infor-
mation from different views which is applicable to different
general ambiguous scenarios. In contrast, those works were
designed for a certain case of ambiguous learning (MMC or
MIL) in the single-view setting.

2The time complexity of MKL has not been theoretically analyzed.
Usually, the MKL solver needs to train an SVM for tens of iterations.
The empirical analysis shows that optimizing the QP problem in SVM
is O(n2.3) where n is the number of training samples. Therefore, the
complexity of MKL is O(kn2.3) where k is the number of iterations in
MKL.
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Figure 3. The prediction on the toy data by co-training. The blue triangles
denote the predicted positive samples and red circles the predicted negative
samples.
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Figure 4. The prediction on the toy data by our co-labeling. The blue
triangles denote the predicted positive samples and red circles the predicted
negative samples.

VI. EXPERIMENTS

In this section, we first compare our co-labeling with
the traditional co-training on the toy problem mentioned in
Section III-C. Then we evaluate our co-labeling approach
on several data sets for two cases: 1) Multi-View Semi-
Supervised Learning (MVSSL), 2) Multi-View Multiple
Instance Learning (MVMIL) .

A. The Toy Problem

The training data of the toy problem are shown in Fig-
ure 2. View 1 contains the two-moons data3 and View 2
contains two clusters which are randomly generated with
the same covariance matrix σ = [1 0.5; 0.5 1] and with the
centers [0; 4] and [4; 0], respectively.

We use SVM as the base classifier to implement the co-
training algorithm. Five positive samples and five negative
samples are selected at each iteration. The classifiers trained
on two views are fused by using the average decision
value. The final predictions of the two classifiers are shown
in Figure 3 and Figure 4, respectively. It can be seen in
Figure 3 that the wrongly labeled data in the first iteration
(the samples located at the tails of the two moons) degrade
the final classifier. The final predictions on those samples
are still not correct. Although our co-labeling also makes
wrong predictions on those samples in the first iteration
since we also train the classifier to initialize the labeling

3It is downloaded from http://www.dii.unisi.it/ melacci/lapsvmp/

for unlabeled data in the SSL setting (see Section IV), it
correctly predicts all the samples using the final classifier
because our co-labeling can correct the errors by leveraging
the label candidates obtained from different iterations and
different biases. The prediction accuracies of the co-training
and our co-labeling are 83.00% and 100.00% respectively.

B. Multi-View Semi-Supervised Learning
1) Data sets: We evaluate our co-labeling approach for

semi-supervised learning on two applications, news classi-
fication and webpage classification. The BBC data set and
BBCSport data set are used for news classification; and the
WebKB data set is used for webpage classification. The
details of these data sets are summarized in Table I and
described as follows:

Table I
SUMMARIZATION OF THE DATA SETS USED IN SSL. D1 AND D2 ARE

THE FEATURE DIMENSIONS OF TWO VIEWS. #c, #l, #u AND #t ARE THE
NUMBERS OF CLASSES, LABELED DATA, UNLABELED DATA AND TEST

DATA, RESPECTIVELY.

Data sets d1 d2 #c #l #u #t
BBC 4817 4818 5 10 1104 1111

BBCSport 2306 2307 5 10 360 367
WebKB 3000 1840 2 12 1039

The BBC and BBCSport data sets: The two data
sets [13] contain news articles collected from the BBC4.
The BBC data set includes 2225 documents from five topics
(business, entertainment, politics, sports and technology) and
the BBCSport data set includes 737 sports news documents
from five classes (athletics, cricket, football, rugby and
tennis). We randomly segment the feature into two views as
in [14]. We partition the data sets into the training set and the
test set, each of which contains 50% of the documents per
class. Ten labeled data are further selected from the training
set.

The WebKB data set: The WebKB data set has been
widely used to evaluate multi-view methods [4], [23], [16]. It
contains 1051 web pages belonging to two categories: course
or non-course. For each web page, there are two views, the
page view which contains the textual content of this page,
and the link view which contains the anchor-text on links
from other webpages pointing to this page. 3000-d features
are extracted for the page view and 1840-d features for the
link view, respectively. 12 samples are selected as the labeled
data and the remaining samples are used as unlabeled data5.

2) Experimental Setting: We compare our co-labeling
with following baselines:

• SVM: The standard SVM trained with the labeled data,
which is a commonly used baseline in semi-supervised
learning.

4The features can be downloaded from http://mlg.ucd.ie/datasets/bbc.ht
ml

5The indices of labeled data and features are publicly available in
http://people.cs.uchicago.edu/∼vikass/manifoldregularization.html



Table II
PERFORMANCES OF DIFFERENT METHODS ON THREE DATA SETS. THE BEST RESULTS ARE DENOTED IN BOLDFACE. MAPS AND STANDARD

DEVIATIONS ARE REPORTED ON BBC&BBCSPORT. ↑ DENOTES THE RESULT IS SIGNIFICANTLY BETTER THAN THE OTHERS ACCORDING TO THE
T-TEST WITH A SIGNIFICANCE LEVEL AT 0.05. PRBEPS ARE REPORTED ON WEBKB. THE RESULTS OF SVM, TSVM AND CO-LAPSVM ARE FROM

TABLE 1 IN [23]. SINCE THE STANDARD DEVIATIONS OF THESE METHODS ARE NOT AVAILABLE, WE ONLY REPORT THE AVERAGE PRBEPS ON
WEBKB.

BBC BBCSport WebKB
View1 View2 View1+2 View1 View2 View1+2 page link page+link

SVM 66.53(4.08) 63.11(3.67) 74.26(3.37) 70.69(3.42) 66.43(3.98) 76.99(3.76) 74.4 77.8 84.4
TSVM 71.99(5.48) 66.83(3.54) 75.72(3.16) 74.62(5.73) 65.51(3.36) 79.21(6.43) 85.5 91.4 92.2

Co-LapSVM 70.30(3.39) 68.04(4.56) 76.97(3.41) 70.70(3.43) 66.43(3.99) 77.14(3.29) 94.3 93.3 94.2
2V-TSVM 52.70(3.96) 52.61(5.34) 58.39(5.25) 64.00(3.08) 63.50(3.86) 69.82(3.78) 85.7 86.7 87.3

PMC — — 71.57(6.37) — — 79.48(5.41) — — 88.6
Co-Labeling 78.41(3.79)↑ 77.61(3.01) ↑ 81.37(3.14) ↑ 82.10(5.41) ↑ 79.60(4.44) ↑ 84.22(5.11) ↑ 92.5 93.1 95.1

• TSVM [11]: The transductive SVM trained with the
labeled and unlabeled data. The two views are later
fused to obtain the final result.

• Co-LapSVM [23]: The Laplacian SVM in the multi-
view setting.

• 2V-TSVM [16]: The TSVM version of co-
regularization, in which both ramp loss and co-
regularization are used to cope with the two-view
setting.

• PMC [7]: An improved version of co-training which
is designed to split the single view features into two
views. We apply PMC on the joint-view of these three
data sets. Due to the randomness in initializing the
feature splits, we run each split five times and use the
split with the minimum objective value of the feature
split algorithm PMD (see [7]).

A binary classifier is trained for all the methods, and
linear kernels are used. The experiments on the BBC and
BBCSport data sets are repeated on 10 training/testing data
splits. The experiments on the WebKB data set are run with
100 training/testing data splits as in [23].

3) Performance: The results on these three data sets
are reported in Table II. Mean average precisions (MAPs)
of 5 classes over 10 rounds are reported for the BBC
and BBCSport data sets. Following [23], the average of
precision-recall break-even point (PRBEP) over 100 splits
are reported for the WebKB data set. The results of SVM,
TSVM and Co-LapSVM on the WebKB data set are copied
from Table 1 in [23].

From the results, we can see that our method achieves
the best results for the joint-view, which demonstrates the
advantage of our co-labeling for semi-supervised learning.
The improvements over the second best in the three data sets
are 4.40%, 4.74% and 0.9%, respectively. It is worth noting
that the co-labeling is significantly better than other methods
on the BBC and BBCSport data sets for each single view
as well as the joint-view. Although the co-labeling does not
achieve best results for the page view and link view on the
WebKB data set, the late fusion result is the best which again
demonstrates that our method can effectively use multi-view
information. The relative improvement is not as significant
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Figure 5. The objective values with respect to the number of iterations
on two views.

Table III
PERFORMANCE OF DIFFERENT VERSIONS OF CO-LABELING ON

BBC-SPORTS.

View1 View2 View1+View2
Co-Labeling(iter) 58.19 61.56 69.77

Co-Labeling(nobias) 74.21 72.00 77.43
Co-Labeling 82.10 79.60 84.22

as on the BBC and BBCSport data sets because it already
has a very high performance, which can be confirmed by
the fact our method achieves 99.11% in the measurement of
MAP over 100 splits.

4) Convergence Analysis: We have analyzed that the
objective value of MKL on each view decreases with respect
to the number of iterations (see Section IV-C). Taking the
first topic (i.e. “athletics”) of the BBC-Sports data set as
an example, we show the objective values of two views in
Figure 5. It can be observed the objective values of the two
views converge very fast and it takes only six iterations to
reach the stop criterion. The average number of iterations
for all 5 classes over 10 splits is 6.36.

5) Strategy Analysis: Three strategies for updating the
label candidate set are discussed in Section III-B. Here we
evaluate those three strategies by introducing two simplified
versions of our co-labeling algorithms: the first version is
Co-Labeling(iter), in which we only use the labeling from
the latest iteration (Strategy 1); and the other one, Co-
Labeling(nobias), uses labelings from all previous iterations
but does not vary biases at each iteration (Strategy 2). We



Table IV
AVERAGE TRAINING TIMES OF DIFFERENT MULTI-VIEW SSL METHODS

PER CLASS PER SPLIT ON THREE DATA SETS (IN SECONDS).

BBC BBCSport WebKB
Co-LapSVM 52.45 2.136 16.69
2V-TSVM 1108 497.3 446.4

PMC 30.64 7.215 55.41
Co-Labeling 36.50 5.111 21.27

also take the BBCSport data set as an example, and the
results of those two simplified versions of our co-labeling
approach are shown in Table III. We can observe that the
performance of Co-Labeling(iter) is degraded without using
MKL and the bias. It is even worse than the results of SVM
reported in Table II which only uses the labeled data. This is
not surprising since the labeling from the trained classifiers
may be very noisy. Directly feeding the labeling as the
training labels to the other view cannot guarantee a robust
classifier as discussed in Section III-B. After using MKL,
the performances of Co-Labeling(nobias) are improved a
lot, which are comparable to other multi-view methods as
reported in Table II. However, Co-Labeling(nobias) still
suffers from the bias problem since we use the prediction
as labeling while other methods do not have this issue.
After varying the biases (Strategy 3), the final results are
significantly better than other methods.

6) Time Comparison: The training time of different
multi-view methods are reported in Table IV. All meth-
ods are performed on a workstation with a 3.3GHz CPU.
We implement the co-labeling with unoptimized MATLAB
code using LIBSVM6. We observe that the co-labeling is
comparable to the Co-LapSVM and PMC in training time
on the three data sets. It demonstrates that the co-labeling is
practical and scalable for real applications considering it can
be further sped up after a better implementation and using a
faster solver (for example LIBLINEAR for the linear case).

C. Multi-View Multiple Instance Learning

MIL has been successfully exploited in Text-Based Im-
age Retreival (TBIR), so we also evaluate our co-labeling
approach for TBIR under the multiple view setting. Similar
to [17], we conduct the experiment on the large-scale NUS-
WIDE data set [8], which consists of 269,648 images from
81 annotated concepts collected from the website Flickr.com.
Three groups of features are extracted:

• 1) The textual feature is extracted from the associated
tags for each image. The vocabulary is constructed
using 1000 words with the highest frequency. Then,
a 1000 dimensional term-frequency feature is extracted
for each image.

• 2) The global visual features are extracted according
to the procedure in [17], then we concatenate three

6It can be further accelerated by using LIBLINEAR which solves the
SVM in the primal form.

Table V
MEAN AVERAGE PRECISIONS (MAPS) OVER 81 CONCEPTS FROM

DIFFERENT METHODS ON THE NUS-WIDE DATA SET.

TG TL TG+TL
MIL-CPB 61.43 57.84 77.07
mi-SVM 59.25 59.26 77.18

sMIL 60.01 62.09 75.48
Co-Labeling 62.56 61.71 79.09

types of global features and apply PCA to obtain 119-d
features.

• 3) The local visual feature is based on the SIFT feature
by preserving LCC coding, which is extracted for each
image using the method in [25]. We train a codebook
with 4096 visual words and use a three-level spatial
pyramid, and finally we get an 86016 dimensional
sparse vector for each image.

Two views are constructed by using these three types of
features. Specifically, we partition the 1000-d textual feature
into two 500-d vectors, t1 and t2, with even dimensions and
odd dimensions respectively. Then we further concatenate
the two textual vectors with the global visual feature vector
and local visual feature vector to form the final feature
vectors for two views with the form x = [γt;λv], which
are denote as TG view and TL view, respectively. For the
TG view, following [17], we set γ = 1 and λ = 0.1. For TL
view, we empirically set γ = 0.1 and λ = 0.9.

We compare our co-labeling approach with three MIL
methods, MIL-CPB [17], mi-SVM [1] and sMIL [5] which
have the best performances as studied in [17]. Since they
are single-view methods, we use the late fusion method to
average the decision values of the classifiers from different
views 7. For all methods, we construct 25 positive bags using
the top relevant images and 25 negative bags using randomly
selected irrelevant images, with each bag containing 15
instances. A Gaussian kernel is used on the TG view and
a linear kernel is used on the TL view. A binary classifier
is trained for each concept, and the top-100 Mean Average
Precisions (MAPs) are reported in the experiments.

The MAPs over 81 concepts for different methods on two
views as well as the results after using late fusion on the
NUS-WIDE data set are reported in Table V. We have the
following observations:

• Our co-labeling approach achieves the best late fusion
result, which demonstrates the effectiveness of the
proposed method. The improvement over the second
best is 1.9% in terms of MAP over 81 concepts.

• The performances of baseline methods on the TG view
are consistent with the reported results in [17] and our
method also achieves the best result.

• On the TL view, we observe that the instance-based
methods MIL-CPB and mi-SVM are worse than the
bag-based method sMIL. A possible explanation is the

7We also tried using early fusion (the average kernel) for these methods.
However, the results are worse than those of late fusion.



labels inferred in the learning process are quite noisy
because the data cannot be well separated by using a
linear classifier. However, the co-labeling still obtains
a good result as it considers not only the input TL
features but also uses the outputs from the TG view.

Moreover, the late fusion result of sMIL is worse than other
methods, although it has good performance on each view.
It is more likely the classifiers from two views are not
as complementary to each other as in other methods. A
possible reason is that the bag-level MIL methods cannot
effectively use all information on training instances [17].
It also demonstrates the advantage of multi-view methods
which can effectively use the information from different
views.

VII. CONCLUSIONS AND FUTURE WORK

To effectively utilize different types of multi-view am-
biguous data, in this paper we have formulated a uni-
fied multi-view framework which covers various ambiguous
learning problems including SSL and MIL under the multi-
view setting. We firstly propose a general method to solve
the single-view ambiguous learning problem using label
candidates. Then, a unified framework is proposed for multi-
view ambiguous learning tasks in which the label candidate
sets are constructed by using the label predictions from the
classifiers trained on the other views. MKL is used to train
a robust classifier from a set of label candidates for each
view. Extensive experimental results on both MIL and SSL
with real-world data sets demonstrate the effectiveness of
our proposed approach.

In the future, we plan to investigate the proposed approach
on other ambiguous learning tasks, such as MISSL and
MMC.
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