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Abstract

Relevant and irrelevant images collected from the We-
b (e.g., Flickr.com) have been employed as loosely labeled
training data for image categorization and retrieval. In this
work, we propose a new approach to learn a robust clas-
sifier for text-based image retrieval (TBIR) using relevant
and irrelevant training web images, in which we explicitly
handle noise in the loose labels of training images. Specif-
ically, we first partition the relevant and irrelevant train-
ing web images into clusters. By treating each cluster as a
“bag” and the images in each bag as “instances”, we for-
mulate this task as a multi-instance learning problem with
constrained positive bags, in which each positive bag con-
tains at least a portion of positive instances. We present a
new algorithm called MIL-CPB to effectively exploit such
constraints on positive bags and predict the labels of test
instances (images). Observing that the constraints on pos-
itive bags may not always be satisfied in our application,
we additionally propose a progressive scheme (referred to
as Progressive MIL-CPB, or PMIL-CPB) to further improve
the retrieval performance, in which we iteratively partition
the top-ranked training web images from the current MIL-
CPB classifier to construct more confident positive “bags”
and then add these new “bags” as training data to learn
the subsequent MIL-CPB classifiers. Comprehensive exper-
iments on two challenging real-world web image data sets
demonstrate the effectiveness of our approach.

1. Introduction
With the rapid adoption of digital cameras, we have wit-

nessed an explosive growth of digital photos. Everyday, a
tremendous amount of images together with rich contextual
information (e.g., tags, categories and captions) are posted
to the Web. There is an increasing interest in developing
new systems to help users to retrieve web images. While
a large number of content-based image retrieval (CBIR) al-
gorithms (see the recent survey in [6]) have been develope-
d over the past decades, it is more desirable and practical
for a user to retrieve photos from the database using textual

queries (i.e., tags) as opposed to example images. However,
this is a non-trivial task because the performance of text-
based image retrieval (TBIR) systems may be significant-
ly degraded when the associated contextual information is
noisy and incomplete [3].

Meanwhile, the massive and valuable web data (i.e., we-
b images and the associated rich textual descriptions) have
been also exploited for various computer vision tasks. For
instance, Torralba et al. [20] used a kNN classifier for sev-
eral object/scene classification tasks by leveraging 80 mil-
lion loosely labeled tiny images. Wang et al. [23] also em-
ployed millions of web data for image annotation. Given
the massive web data, relevant and irrelevant web images
can be readily obtained by using keyword based search.
In [8, 9, 10, 19, 21], such relevant and irrelevant web im-
ages were used as the loosely labeled training data for image
categorization and retrieval (see Section 2 for more details).

In this work, we explicitly handle noise in the loose la-
bels of training images. We first respectively partition the
relevant web images and the randomly sampled irrelevan-
t web images into clusters. Following [8, 21], we formu-
late our task as a multi-instance learning (MIL) problem by
treating each cluster as a “bag” and the images in each bag
as “instances”. Observing that most of the associated textu-
al descriptions are more or less related to the content of web
images, we assume that each positive bag has at least a por-
tion of positive instances, as suggested in [8]. Note that this
new assumption on positive bags is more suitable for our
TBIR task when compared with the traditional assumption
in most existing MIL work (e.g., [21]) that one positive bag
contains at least one positive instance. However, we still use
the traditional assumption on negative bags (i.e., each nega-
tive bag does not contain any positive instances), as the ex-
periments in [8] show that this assumption generally holds
for negative bags. To effectively solve the MIL problem
with constrained positive bags and predict the labels of in-
stances (images), we present an algorithm called MIL-CPB
here, which is a simplified version of the method1 in [8].

1The algorithm in [8] is called generalized multi-instance SVM (GMI-
SVM), because it can handle the ambiguities on the instance labels in both
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Since the labels of relevant training web images are quite
noisy, the constraints on positive bags may not always be
satisfied in our application. To cope with this issue, in this
work we propose a progressive scheme (referred to as Pro-
gressive MIL-CPB, or PMIL-CPB) to refine the quality of
the positive bags. Specifically, we construct more confident
“bags” from the top-ranked training web images using the
current MIL-CPB classifier. After that, these new “bags”
are added up to the training data in order to learn the sub-
sequent MIL-CPB classifiers in an iterative fashion. In Sec-
tion 4, we conduct comprehensive experiments using the
challenging NUS-WIDE and Google data sets and the re-
sults clearly demonstrate the effectiveness of our approach.

2. Related Work
Loosely labeled training web data has been used for im-

age categorization and retrieval. Fergus et al. [9] extended
pLSA to handle the large intra-class variability among im-
ages returned by the image search engine. Schroff et al. [19]
developed a multi-modal approach to collect a large image
data set, in which different regularization parameters were
used for the positive and negative training instances when
learning the visual feature based SVM classifier. Mean-
while, researchers also proposed new tag re-ranking meth-
ods [3, 14], which are specifically designed for Flickr pho-
tos that are initially associated with noisy tags. In contrast
to [3, 9, 14, 19], we formulate a new MIL problem with
constrained positive bags to solve the learning problem with
ambiguity in the training samples.

MIL methods [4, 11] have been successfully used in
region-based image retrieval. In these applications, images
are considered as bags; while regions in the images are
considered as instances. In this work, we treat one image
cluster as one “bag” and the images inside the bag as “in-
stances”. Moreover, the existing MIL approaches (e.g., Di-
verse Density (DD) [17], EMDD [24], Citation kNN [22])
that can predict the labels of instances are computational-
ly expensive, making them unsuitable for large-scale TBIR
applications. In contrast, our method can also efficiently
predict the labels of instances (images).

Our work is quite related to [21], in which a variant (re-
ferred to as WsMIL here) of Sparse MIL (sMIL) [2] was
proposed for image re-ranking and categorization by itera-
tively updating the weighted mean of instances in the con-
straint. However, our work is different from [21] in two
aspects: 1) the work in [21] used the traditional assumption
that one positive bag contains at least one positive instance.
We argue that our new assumption that a positive bag con-
tains at least a portion of positive instances is more suitable
for this task as most of the associated textual descriptions

positive and negative bags. The resultant optimization problem in MIL-
CPB is easier in this work, because we only need to handle the ambiguities
in positive bags.

are more or less related to the content of web images [8];
2) the work in [21] used pre-defined and fixed “bags” when
learning the classifiers and the high-quality positive bags
cannot always be obtained due to the noisy web data, while
in our work we progressively improve the quality of the pos-
itive bags and iteratively add new “bags” to the training da-
ta to learn a more robust classifier. Our experiments also
demonstrate that PMIL-CPB is better than WsMIL and s-
MIL for the TBIR task.

Our work is also related to the recent bag-based re-
ranking framework [8], which is specifically designed for
improving the web image re-ranking performance. In con-
trast to [8], this work focuses on how to explicitly handle
noise in the loose labels of training images, and our pro-
posed approach PMIL-CPB can effectively handle the chal-
lenging case when the constraint on a positive bag is not
satisfied in [8].

3. TBIR with Multi-Instance Learning
Given a textual query q, the recent TBIR system in [15]

first automatically collects relevant web images whose sur-
rounding texts contain the word q as well as irrelevant web
images whose surrounding texts do not contain the word
q. Then, these relevant (resp., irrelevant) web images were
directly used as positive (resp., negative) training data to
learn classifiers (e.g., SVM), and the database images are
finally ranked according to their decision values from the
learned classifier. We observe that a large portion of rele-
vant web images returned by the image search engine and
the method suggested in [15] are accompanied by incorrect
labels because the web images are generally associated with
noisy textual descriptions (e.g., tags, categories and caption-
s). Therefore, the learned classifiers based on these loosely
labeled web images are not robust, which significantly de-
grades image retrieval performances.

To effectively utilize the noisy web data for image re-
ranking and categorization, Vijayanarasimhan and Grau-
man [21] proposed a variant (called WsMIL here) of the
existing MIL method sMIL [2] to learn classifiers by itera-
tively updating the weights of the instances in each positive
bag. However, in their work the positive bags are assumed
to be constructed by using image search engines in multiple
languages. Moreover, their approach follows the traditional
MIL assumption [1, 2, 4, 7, 13, 17, 22, 24] that a positive
bag contains at least one positive instance.

In this work, we first respectively partition the relevant
web images and the randomly sampled irrelevant web im-
ages into clusters of the same size. Following [8, 21], we
also formulate our task as a multi-instance learning (MIL)
problem by treating each cluster as a “bag” and the im-
ages in each bag as “instances”. Based on the observation
that negative bags generally do not contain any positive in-
stances and inspired by [8], we formulate our task as a MIL
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Figure 1. Flowchart of the proposed approach.

problem with constrained positive bags, in which each pos-
itive bag contains at least a portion of positive instances.

Let us denote each instance as xi with its label yi ∈
{±1}, where i = 1, . . . , n. We also represent the label of
the bag BI as YI ∈ {±1}. The superscript ′ denotes the
transpose of a vector or matrix. Moreover, I denotes the i-
dentity matrix and 0,1 ∈ ℜn denote the column vectors of
all zeros and ones, respectively. We also define P⊙Q as the
element-wise product between two matrices P and Q. The
inequality v = [v1, v2, . . . , vj ]

′ ≥ 0 means that vi ≥ 0 for
i = 1, . . . , j. The new MIL constraints can be interpreted
as follows:∑

i:xi∈BI

yi + 1

2
≥ σ|BI | for YI = 1,

and yi = −1 for YI = −1.

(1)

Note that our new MIL constraints differ from the tra-
ditional MIL assumption in that positive bags are provided
with more information, namely, each positive bag contains
at least a portion (i.e., σ) of positive instances. Moreover,
the traditional MIL assumption is just a special case of our
new assumption when setting σ = 1/|BI |.

To effectively exploit the constraints on positive bags, we
first present an algorithm called MIL-CPB in Section 3.1,
which is a simplified version of the method in [8]. We fur-
ther develop a progressive scheme called Progressive MIL-
CPB (PMIL-CPB) in Section 3.2. The overall flowchart of
our proposed approach is shown in Fig. 1.

3.1. MIL with constrained positive bags (MIL­CPB)
In our TBIR application, we rank the database images

based on their decision values from the decision func-
tion (i.e., classifier). And the decision function is to be
learned with the instances from the training bags. Let us
define the vector of instance labels as y = [y1, . . . , yn]

′,
and denote the feasible set of y as Y = {y|yi ∈
{±1}, y satisfies the conditions in (1)}. Following [8], we
employ the formulation of Lagrangian SVM with the square
bias penalty b2 and the square hinge loss function. We pro-
pose to learn the decision function f(x) = w′ϕ(x) + b in
MIL-CPB by minimizing the following structural risk func-
tional:

min
y∈Y,w,b,ρ,ξi

1

2

(
∥w∥2 + b2 + C

n∑
i=1

ξ2i

)
− ρ, (2)

s.t. yi(w
′ϕ(xi) + b) ≥ ρ− ξi, i = 1, . . . , n,

where ϕ : x → ϕ(x) is a mapping function that maps x
from the original space into a high dimensional space ϕ(x),
C > 0 is a regularization parameter, ξi’s are slack variables
and 2ρ/∥w∥ defines the separation between the two oppo-
site classes. It is worth noting that the constraints in (2) are
defined for all training instances, which is intrinsically d-
ifferent from the existing work sMIL [2] and WsMIL [21]
where the constraint for each positive bag is defined only on
the (weighted) mean of instances. One could expect that in
our work there would be more support vectors (defined on
the instances) to represent a more precise decision bound-
ary, and in return the learned classifier could achieve better
prediction performance for instances.

Following [8], we solve (2) in its dual form listed below
by introducing a dual variable αi for each constraint in (2):

min
y∈Y

max
α∈A

−1

2
α′

(
K̃⊙ yy′ +

1

C
I

)
α, (3)

where α = [α1, . . . , αn]
′, A = {α|α ≥ 0, 1′α = 1} is

the feasible set of α, K̃ = K+ 11′ and K = [k(xi,xj)] ∈
ℜn×n is the kernel matrix with the kernel function k d-
educed from the feature mapping ϕ(·) (i.e., k(xi,xj) =
ϕ(xi)

′ϕ(xj)). Note that (3) is an integer programming
problem with respect to the instance labels yi’s, which is
an NP-hard problem and therefore is computationally in-
tractable. To efficiently solve the optimization problem in
(3), we present Theorem 1:

Theorem 1. The lower bound of the objective value of the
mixed integer programming problem in (3) is the optimal
objective value of the following optimization problem:

max
α∈A

{
max

θ
−θ :θ ≥ 1

2
α′

(
K̃⊙ ytyt′+

1

C
I

)
α, ∀yt∈Y

}
, (4)

where yt is any feasible solution in Y . And by replacing the
inner optimization problem with respect to θ in (4) with its
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Algorithm 1 Cutting-plane algorithm for MIL-CPB
1: Initialize yi = YI for xi∈BI as y1, and set C = {y1};
2: Use SimpleMKL [18] to solve α and d in (5) with C;
3: Use α to select a violated yt and set C = yt ∪ C;
4: Repeat Steps 2 and 3 until convergence.

dual form, the optimization problem in (4) is equivalent to
the following problem:

min
d∈D

max
α∈A

−1

2
α′

 ∑
t:yt∈Y

dtK̃⊙ ytyt′ +
1

C
I

α. (5)

where the dt’s are dual variables for the inner optimization
problem in (4), d is the vector of dt’s and D = {d|d ≥
0,1′d = 1} is the feasible set of d.

Proof. The proof is presented in [8].

The optimization problem (5) can be deemed as a Mul-
tiple Kernel Learning (MKL) problem [18]. Note that the
number of base kernels K̃ ⊙ ytyt′ in (5) is exponential in
size. As a result, the existing state-of-the-art multiple ker-
nel learning methods such as SimpleMKL [18] cannot be
used to solve (5), due to the heavy computational cost. To
this end, we employ the cutting-plane algorithm [12] to find
a subset C ∈ Y of the constraints that can well approxi-
mate the original optimization problem. To find the opti-
mal solution, we alternately update the dual variable α and
the linear combination coefficient d during the optimization
procedure. Algorithm 1 lists the detailed optimization pro-
cedure for MIL-CPB. After obtaining the optimal α and d,
we can derive the decision function as follows:

f(x) =
∑

i:αi ̸=0

αiỹik̃(x,xi), (6)

where ỹi =
∑

t:yt∈C dty
t
i and k̃(x,xi) = k(x,xi) + 1.

Finding the most violated constraint for yt in Step 3 of
Algorithm 1 is problem-specific, and it is also the most chal-
lenging part in the cutting-plane algorithm. According to
(4), the most violated yt is essentially the solution to the op-
timization problem as maxy∈Y α′(K̃⊙yy′)α. We employ
a similar process as in [8] to solve this integer optimiza-
tion problem by enumerating all possible candidates of yt.
Rather than conducting the enumeration for all instances in
positive and negative bags as in [8], we only need to enu-
merate the possible labeling candidates of the instances in
positive bags in this work because all instances in the neg-
ative bags are assumed to be negative. In the experiments,
we set the portion (i.e., σ) of positive instances as 0.6, and
we also enforce each bag to contain 15 instances in order to
make this problem solvable.

Algorithm 2 Progressive MIL-CPB (PMIL-CPB)
1: Initialize Ninit positive bags and Ninit negative bags for

the given textual query q;
2: Train the MIL-CPB classifier and rank the remaining

relevant images from the training data set;
3: Construct Ninc positive bags from the top-ranked rel-

evant training images and Ninc negative bags from the
randomly sampled remaining irrelevant training im-
ages;

4: Repeat steps 2 and 3 until the maximum number of it-
erations is reached.

3.2. Progressive MIL­CPB (PMIL­CPB)
In our TBIR task, we use the relevant training images

to construct positive bags. However, the labels of relevan-
t training web images are usually quite noisy, so the con-
straints on positive bags in our MIL-CPB algorithm may
not always be satisfied. We therefore develop a new scheme
called Progressive MIL-CPB to progressively select more
confident positive bags.

Specifically, given a textual query q, we first uniformly
partition the top-ranked relevant web images and the ran-
domly sampled irrelevant web images into 2Ninit clusters
(i.e., Ninit positive bags and Ninit negative bags). The top-
ranked relevant web images can be randomly chosen from
the images returned by the image search engine. For the
Flickr images associated with noisy tags, we define the fol-
lowing ranking score [3] for each relevant image x to collect
the top-ranked relevant images:

r(x) = −τ +
1

δ
, (7)

where δ is the total number of tags in image x, and τ is the
rank position of the textual query q in the tag list of image
x.

The 2Ninit bags are used as training data to learn an initial
MIL-CPB classifier (see (6)). Then, we rank the relevant
images in the training data set according to their decision
values from the initial instance-level decision function, and
we choose the 15Ninc top-ranked images to construct Ninc
positive bags with each bag containing 15 instances. We ad-
ditionally choose Ninc negative bags by randomly sampling
15Ninc irrelevant images. The 2Ninc new bags are added up
to the training data to learn an updated MIL-CPB classifi-
er. We iteratively partition the top-ranked training images
from the current MIL-CPB classifier to construct more con-
fident “bags” and then add these new “bags” to the training
data to learn the subsequent MIL-CPB classifier until the
maximum number of iterations is reached. Note that the
instances that are already in the positive/negative training
bags will not be selected in the subsequent iterations. The
overall process is summarized in Algorithm 2.
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4. Experiments
In this work, we first test our PMIL-CPB on the NUS-

WIDE data set [5] for the large-scale image retrieval task,
and then we compare PMIL-CPB with [19, 21] on the
Google data set [9] for image re-ranking. We also report
the results of MIL-CPB, which is a simplified version of
the method in [8] without conducting the progressive bag
selection process discussed in Section 3.2.

4.1. Image retrieval on the NUS­WIDE data set
The NUS-WIDE data set [5] consists of 269,648 images

collected from Flickr.com and their ground-truth annota-
tions for 81 concepts. All images in the NUS-WIDE data
set are associated with noisy tags. Therefore, we represent
each image by using its visual and textual features. Similar
to [5], we extract three types of global visual features: Grid
Color Moment (225 dim), Wavelet Texture (128 dim) and
Edge Direction Histogram (73 dim). For each image, we
further concatenate the three types of visual features to form
a 426-dimensional feature vector. PCA is further employed
to reduce the dimension of each feature vector by project-
ing it into a 119-dimensional visual feature space, which
preserves 90% of the energy. We also extract the textual
feature for each image from its associated tags. Specifical-
ly, we have removed the stop words (e.g., “a”, “the”) and
converted the remaining tags into their prototypes. We s-
elect the top-200 words with the highest frequency in the
training set of NUS-WIDE as the vocabulary. And a 200-
dimensional term-frequency feature is then extracted as the
textual feature for each image. Above all, for each image,
we further concatenate its visual feature v and its textual
feature t to form the final feature vector representation x,
namely, x = [λv′, t′]′, where the parameter λ is empirical-
ly fixed as 0.1 in the experiments.

Considering that APR [7], EM-DD [17] and Citation kN-
N [22] are inefficient for this large-scale TBIR application,
we focus on comparisons between our PMIL-CPB and the
MIL methods mi-SVM2 [1], Single Instance Learning SVM
(SIL-SVM) [2], MILES [4], sMIL[2] and WsMIL [21].
Note that in SIL-SVM all the instances in positive (resp.,
negative) bags are treated as positive (resp., negative) sam-
ples. For MILES [4], we treat each test image as one test
bag in this application, because it can only predict the labels
of bags.

For mi-SVM, SIL-SVM, MILES, sMIL, WsMIL and
MIL-CPB, N positive training bags are constructed by us-
ing the top-ranked relevant images decided according to the
ranking scores from (7), and N negative training bags are
formed by randomly sampling the irrelevant images, where
we set N = 5, 7, 10, 12, 15, 17, 20 and 25 in the experi-
ments. For our PMIL-CPB, we use the same strategy to

2MI-SVM and mi-SVM achieve similar results in this work, so we only
take mi-SVM as an example to report the results.

Table 1. MAPs (%) of all methods over 81 concepts on the NUS-
WIDE data set. Each result in the table is the best among all results
obtained by using different numbers (i.e., N ) of positive/negative
training bags.

SIL-SVM mi-SVM MILES sMIL WsMIL MIL-CPB PMIL-CPB
MAP 57.54 58.63 53.82 59.71 59.71 61.49 63.26
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Figure 2. MAPs of all methods over 81 concepts on the NUS-
WIDE data set with respect to different numbers (i.e., N ) of posi-
tive/negative bags.

construct Ninit positive training bags as well as Ninit nega-
tive training bags, where Ninit = 5. With the progressive
approach (see Section 3.2), we iteratively add Ninc positive
and Ninc negative training bags, where Ninc is set as 2, 3 or
5 in order to fairly compare PMIL-CPB with other methods
using the same number of training bags. Note that we fix
the number of instances in each bag to 15 for all the meth-
ods. It is worth mentioning that the ground-truth labels of
the training images are not used in the learning process for
all methods.

For all methods, we train one-versus-all classifiers using
the RBF kernel with the bandwidth parameter set as 1/A,
where A is the mean value of the square distances between
training images. The training set consisting of 161,789 im-
ages. We evaluate the performances on the test set with
107,859 test images. For performance evaluation, we calcu-
late the non-interpolated Average Precision (AP) [3] based
on the 100 top-ranked images. We also define Mean Aver-
age Precision (MAP) as the mean of APs over all 81 con-
cepts.
Results: For each method, Table 1 reports its best result a-
mong all results obtained by using different N . Fig. 2 shows
the MAPs of all methods over 81 concepts using N positive
and N negative training bags. From Fig. 2 and Table 1, we
have the following observations:
1) MILES achieves the worst MAP in this application pos-
sibly because it cannot effectively predict the labels of in-
stances. SIL-SVM generally performs worse than mi-SVM
except the case when setting N = 12. The explanation is
that mi-SVM can cope with the labeling ambiguities on pos-
itive bags to some extent while in SIL-SVM all the training
instances in positive bags are used as positive samples.
2) sMIL and WsMIL both outperform SIL-SVM and mi-
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SVM, which demonstrates that the MIL methods sMIL and
WsMIL are more suitable for this application. Moreover,
sMIL and WsMIL achieve very similar performances on
this data set, which indicates that the iterative update of the
weights for the instances in positive bags cannot lead to sig-
nificant performance improvement for the large-scale TBIR
task.
3) The performances of most MIL methods generally in-
crease when using more training bags. The best MAP of
MIL-CPB is better than those of sMIL and WsMIL, which
demonstrates the effectiveness of MIL-CPB for exploiting
the new MIL constraints on the positive training bags.
4) Our progressive approach PMIL-CPB consistently
achieves the best results, and it quickly reaches the best
MAP by using only 12 positive/negative training bags and
then its performance becomes stable. It demonstrates that
PMIL-CPB is an effective method for exploiting the new
MIL constraints on positive bags, and it also shows that it is
beneficial to employ the progressive bag selection scheme
to construct high-quality positive training bags.
Purity comparison: We experimentally investigate the
quality of the training instances from the positive bags in
PMIL-CPB by using the ground truth annotations of these
images. Note that in (6) the predicted label ỹi of each
training instance xi is obtained by ỹi =

∑
t:yt∈C dty

t
i . If

ỹi > 0.5, we predict xi as a positive instance; otherwise,
xi is predicted as a negative instance. For each concept, we
define purity p = m′/m as the evaluation metric to analyze
the quality of the added relevant images, where m is the
number of training instances (referred to as positively pre-
dicted training instances) that are predicted as positive in-
stances by PMIL-CPB3 and m′ is the number of truly pos-
itive instances (according to the ground-truth annotations)
among the m positively predicted training instances. For
PMIL-CPB, we analyze the purity based on the classifier
learned using 20 positive and 20 negative training bags.

For comparison, we also report the purity of the top-
ranked m relevant training images from Init Ranking in
which the images are ranked according to the initial rank-
ing scores from (7). In the experiment, we set m =
50, 75, 100, 125, 150, 175 and 200. The average purities of
Init Ranking and PMIL-CPB over 81 concepts on the NUS-
WIDE data set are shown in Fig. 3. From Fig. 3, we observe
that the average purity of PMIL-CPB is always much better
than that of Init Ranking, which demonstrates that PMIL-
CPB can better cope with the noise in loose labels by effec-
tively exploiting the new MIL constraints as well as using
the progressive bag selection scheme. We also observe that

3In PMIL-CPB, the positively predicted training instances are ranked
according to the bag orders of the positive training bags. Recall that we use
the progressive approach to increase the number of training bags. There-
fore, a bag that is added in an earlier iteration has a higher rank. The initial
Ninit = 5 positive bags are also ranked, because they are constructed by
uniformly partitioning the top-ranked relevant images.
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Figure 3. Average purities of Init Ranking and PMIL-CPB over 81
concepts on the NUS-WIDE data set using different numbers (i.e.,
m) of positively predicted instances.

the average purity of PMIL-CPB generally increases as the
number of positively predicted instances increases. There
are two explanations. On one hand, more confident “bags”
that contain more pure positive instances are progressively
added after each iteration. On the other hand, the learned
MIL-CPB classifiers using more confident “bags” also be-
come more robust. We have similar observations with dif-
ferent numbers (i.e., N ) of training positive/negative bags.

4.2. Image re­ranking on the Google data set
The Google data set [9] consists of the images returned

by Google Image Search. In total, this data set has 7 cate-
gories with each having about 600 images on average. Ac-
cording to [9], on average there are 30% “good” images
with clear view, 20% “ok” images with extensive occlu-
sion and image noise, and 50% “junk” images that are un-
related to the category. As suggested in [9, 21], we also
use four interest point detectors (i.e., Kadir&Brady Salien-
cy operator, Harris-Hessian detector, Difference of Gaus-
sians (DoG) [16], and Edge-Laplace detector), and then we
extract the SIFT descriptor [16] from each salient region.
For each detector, we construct an independent codebook
by clustering the descriptors from the training images with
k-means, where we set k = 200. The final vocabulary con-
sists of 800 visual words from the combined codebooks.
Each image is finally represented as an 800 dimensional to-
ken frequency (tf) feature. Since the images in this data set
are not associated with any textual descriptions, only the
visual feature is used in both the training and testing stages.

In this work, we re-rank the images from the Google da-
ta set by using different methods including SIL-SVM, mi-
SVM, MILES, MIL-CPB and our proposed method PMIL-
CPB. We also report the existing image re-ranking result-
s from [19, 21] on this data set. Following [19, 21], we
treat the “ok” images as positive samples in the experi-
ment because we believe the images with extensive occlu-
sion and image noise are the challenging examples for e-
valuating different methods. For the given category, we
construct each positive bag by randomly sampling 15 in-
stances from this category, and each negative bag is ob-
tained by randomly selecting 15 instances from other cate-
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Table 2. Mean precisions (%) at 15% recall over 7 categories on
the Google data set. Each result in the table is the best among
all results obtained by using different numbers (i.e., N ) of posi-
tive/negative training bags.

SIL-SVM mi-SVM MILES MIL-CPB PMIL-CPB
MP 74.45 75.81 74.89 85.61 86.64

Table 3. Per-category precisions (%) at 15% recall for 7 categories
(i.e., “Airplane”, “Cars rear”, “Face”, “Guitar”, “Leopard”, “Mo-
torbike” and “Wrist watch”) on the Google data set. For better
presentation, we denote the name of each category by using its
first letter in this table.

A C F G L M W Mean
WsMIL [21] 100 81 57 52 66 79 95 75.71

Schroff’s [19] 58.5 – – 70.0 49.6 74.8 98.1 70.20
PMIL-CPB 100 75.34 89.91 82.74 86.15 76.63 95.72 86.64

gories. For all methods, similarly as on the NUS-WIDE da-
ta set, we set N = 5, 7, 10, 12, 15, 17 and 20 (i.e., Ninit = 5
and Ninc = 2, 3 or 5 for PMIL-CPB). We also adopt the
RBF kernel by empirically setting its bandwidth parameter
as 0.25/A, where A is the mean value of the square dis-
tances between training images. Following [19, 21], the per-
category precision4 at 15% recall is used for performance
evaluation.

In Table 2, we report the mean precision at 15% recall
of each method over all 7 categories. We observe that MIL-
CPB is better than SIL-SVM, mi-SVM and MILES. More-
over, PMIL-CPB outperforms MIL-CPB, which indicates
that our proposed progressive bag selection scheme can au-
tomatically construct better positive bags to further improve
the performance.

In Table 3, we compare the per-category precision and
mean precision at 15% recall of the proposed method
PMIL-CPB with the results reported in [19, 21]. Compared
with the existing work [19, 21], our method PMIL-CPB en-
joys significant performance improvements in 3 out of the
7 categories (i.e., “face”, “guitar” and “leopard”), and al-
so achieves the same or similar performances for some cat-
egories (i.e., “airplane”, “motorbike” and “wrist watch”).
The performance of PMIL-CPB is also much better when
compared with [19] and [21] in terms of the mean precision
at 15% recall.

5. Conclusion
In this paper, we have proposed a new TBIR approach

that can effectively exploit loosely labeled web images to
learn robust SVM classifiers. First, we partition the relevan-
t and irrelevant web images into clusters, and then we treat
each cluster as a “bag” and the images in each bag as “in-
stances”. Observing that each positive bag may contain at
least a portion of positive instances, we follow [8] and for-
mulate this task as an MIL problem with such constraints on
positive bags. To predict the labels of instances (images),

4In this work, we follow the same setting as in [19, 21], and report
the mean of precisions from five rounds of random positive/negarive bag
construction processes.

we present MIL-CPB which is a simplified version of the
method in [8]. Moreover, we propose a novel progressive
scheme called PMIL-CPB to automatically and progressive-
ly select more confident positive bags, which leads to more
robust classifiers. We conduct comprehensive experiments
using the challenging NUS-WIDE data set and Google data
set, and the results clearly demonstrate the effectiveness of
our TBIR approach.
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