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Abstract

Multiple Instance Learning (MIL) has been widely ex-
ploited in many computer vision tasks, such as image re-
trieval, object tracking and so on. To handle ambiguity of
instance labels in positive bags, the training process of tra-
ditional MIL methods is usually computationally expensive,
which limits the applications of MIL in more computer vi-
sion tasks. In this paper, we propose a novel batch mode
framework, namely Batch mode Adaptive Multiple Instance
Learning (BAMIL), to accelerate the instance-level MIL
methods. Specifically, instead of using all training bags at
once, we divide the training bags into several sets of bags
(i.e., batches). At each time, we use one batch of train-
ing bags to train a new classifier which is adapted from the
latest pre-learned classifier. Such batch mode framework
significantly accelerates the traditional MIL methods for
large scale applications and can be also used in dynamic
environments such as object tracking. The experimental
results show that our BAMIL is much faster than the re-
cently developed MIL with constrained positive bags while
achieves comparable performance for text-based web im-
age retrieval. In dynamic settings, BAMIL also achieves the
better overall performance for object tracking when com-
pared with other online MIL methods.

1. Introduction
Multiple instance learning (MIL), originated in drug ac-

tivity prediction [9], has attracted intensive attention from
many researchers in the recent decade. In MIL, the training
samples are bags of unobserved instances (i.e., the labels
of instances are unknown). Unlike traditional supervised
learning in which the labels of instances are provided, in
MIL we are given only the labels of bags, which can be con-
sidered as a particular form of weak supervision. Usually,
if one bag contains at least one positive instance, this bag is
positive; otherwise, it is negative. MIL is designed to handle
uncertainty (or ambiguity) of unobserved instance labels in
positive bags, making it applicable for a variety of computer
vision tasks such as action recognition [14], content-based
image retrieval [28], text-based image retrieval [24, 20], im-

age categorization [2, 4, 6, 7, 13, 22, 29], region of interest
(ROI) localization [19], object detection [25], object track-
ing [3, 17] and so on.

There are two major approaches to handle the uncertain-
ties of unobserved instance labels, bag-level and instance-
level MIL methods, respectively. The former one [4, 21,
6, 27] assumes that the bags are identically and indepen-
dently distributed (i.i.d. for short) and to convert each
bag to a single training example. Since the bag labels are
certain, one can directly adopt the traditional supervised
learning approaches to train the bag-level classifier. Intu-
itively, bag-based methods take each bag as a whole, and
therefore are more suitable for bag prediction. Although
some of them can also predict the instance confidence,
they might achieve poor performance for instance predic-
tion [18]. The other way is to assume the instances in each
bag are i.i.d. and directly deal with the label uncertainties
in MIL [2, 13, 19, 11, 18]. These methods usually infer the
instance labels or find the confident instances in positive
bags, meanwhile, an instance-level classifier is trained by
using the inferred positive instances together with negative
instances.

One of major challenges in MIL is how to accelerate the
training process for large-scale applications. Another one is
how to handle dynamic MIL tasks such as object tracking.
Notice that one can easily derive a no-regret online algo-
rithm for bag-level MIL as in [17] because bag labels are
available in MIL. On the other hand, due to the absence
of the instance labels in positive bags, the instance-level
MIL needs to explicitly handle uncertainty of instance la-
bels, such that its training process is generally much more
expensive than the bag-level ones. However, it is non-trivial
to develop an online algorithm for instance-level MIL.

To accelerate the training process for instance-level MIL,
in this paper we present a novel batch mode adaptive frame-
work, referred as BAMIL. Specifically, we first partition
the training bags into several smaller sets of training bags
(batches). Each time we train the instance-level classifier
using the instance-level MIL methods in a batch-by-batch
fashion which is simultaneously adapted from the latest pre-
learned classifier. Since training the classifier using one
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batch of training bags does not take too much time, the
training process with our framework is much faster. More-
over, such framework can be applied for dynamic settings
such as object tracking.

Motivated by the recently developed Multiple Instance
Learning with Constrained Positive Bags (MIL-CPB) [18],
we also adopt the new constraints on positive bags, which
assumes that each positive bag contains a pre-defined por-
tion of positive instances. Such constraints are suitable for
a lot of vision tasks. For instance, in the text-based image
retrieval task (TBIR) [24, 18], positive bags are constructed
by using relevant web images, in which a certain fraction
of images are true-positives. Since the relevant images for
some textual queries are quite noisy, the constraints on pos-
itive bags may not always be satisfied. We further adopt a
progressive scheme to handle the possible noisy bag labels
by selecting the most confident relevant images similarly as
in [18]. Moreover, in the object tracking task [3, 17], al-
though one usually wants to locate one target, the positive
instances extracted around the target are also quite similar
to the target, which follows the constraints as well.

Our main contributions are summarized as follows:
• We proposed a novel batch mode framework (i.e.,

BAMIL)to accelerate the instance-level MIL methods
for large-scale vision applications.

• Similar to other online bag-level MIL methods, with
our framework, the instance-level MIL methods can
also be readily applied for the applications in dynamic
environments such as object tracking.

• Taking the recent work MIL-CPB as a showcase, we
demonstrate promising results for TBIR and object
tracking in term of efficiency and effectiveness. More-
over, we propose an approximation solution to find vi-
olated y in MIL-CPB (see Section 4.3) to further ac-
celerate MIL-CPB.

2. Related Work
We categorize the recent MIL methods for computer vi-

sion tasks into two groups:
Bag-level MIL: The bag-level MIL methods convert each
bag to a single sample for learning MIL classifiers. Chen et
al. [6, 7] proposed SVM-based MIL methods by construct-
ing feature representations for bags. Gärtner et al. [12] pro-
posed a general multiple instance kernel defined on bags,
and thus different kernel methods can be used to solve MIL
problems. Based on [12], Bunescu et al. [4] developed a
method called sparse MIL (sMIL) by representing each pos-
itive bag as the mean of its instances. Viola et al. [25] pro-
posed MIBoost using boosting in which they adopted the
Noisy OR model to formulate the likelihood on each posi-
tive bag.
Instance-level MIL: One of the pioneer work on instance-
level MIL was from Andrews et al. [2], in which two SVM-

based formulations (i.e., mi-SVM and MI-SVM) were pro-
posed to find the positive instances and the most posi-
tive instance in each positive bag, respectively. Han et
al. [13] extended MI-SVM by using a projection constraint
to avoid false positive in MIL. Zhou and Xu [29] showed
that instance-level MIL can be viewed as a special case of
semi-supervised learning [5], and then they solved their pro-
posed MIL method by using semi-supervised learning tech-
niques. Li et al. [19] proposed instance-level key-instance
SVM (Ins-KI-SVM) to represent each bag by finding the
key instance among all its instances. Because instance-level
methods need to handle the ambiguity on instance labels,
their training process are generally time-consuming.

In the context of TBIR, weighted sMIL (WsMIL) [24],
which is extended from sMIL [4], was proposed by repre-
senting each positive bag as a weighted combination of its
instances (i.e., the images obtained from text-based image
search in their application). Li et al. [18] proposed to gener-
alize the traditional MIL constraints by enforcing each pos-
itive bag to contain at least a number of positive instances
and presented a progressive scheme in which they incre-
mentally select top-ranked image to construct confident
positive bags. However, they’re as slow as other instance-
level MIL methods.

MIL methods were also proposed for object tracking [3,
17]. Babenko et al. [3] extended MIBoost [25] for MIL
in an online fashine. Based on the work [7], Li et al. [17]
proposed a bag-level online MIL method called MIO. More
recently, Leung et al. [16] applied MIBoost in video clas-
sification, and Xue et al. [26] proposed a correlative MIL
model to annotate images as well as regions.

3. Multiple Instance Learning with Con-
strained Positive Bags (MIL-CPB)

In multiple instance learning, we are given a number of
unlabeled instances {xi|i = 1, . . . , n} which are from N
labeled bags {(BI , YI)|I = 1, . . . , N}, where YI is the la-
bel of bag BI = {xi|i ∈ SI} and SI is the index set for
the instances in BI . Note that we have SI ̸= ∅,∀I and
SI∩SJ = ∅, I ̸= J . For a given class, a positive or negative
bag BI is associated with a bag label YI ∈ {±1}.The unob-
served instance label of each xi is denoted as yi ∈ {±1}.

Observing that the relevant images contain a consider-
able number of true-positive images in TBIR, Li et al. [18]
proposed an instance-level MIL method called MIL-CPB
for the TBIR application, in which they considered more
general multiple instance constraints on positive bags:∑

i∈SI

yi + 1

2
≥ µ|BI | for YI = 1,

and yi = −1 for YI = −1.

(1)

where µ > 0 represents the minimal portion that positive
instances take up in the corresponding positive bag.
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Based on (1), MIL-CPB is formulated as:

min
y∈Y,

w,b,ρ,ξi

1

2

(
∥w∥2 + b2 + C

n∑
i=1

ξ2i

)
− ρ (2)

s.t. yi(w
⊤ϕ(xi) + b) ≥ ρ− ξi, i = 1, . . . , n,

where y = [y1, . . . , yn]
⊤ is the label vector of the instances,

Y is the feasible set of y satisfying the MIL assumption
in (1), ϕ : x → ϕ(x) is the feature mapping function,
2ρ/∥w∥ defines the separation between two classes and ξi’s
are the slack variables. As the optimization problem in (2)
is a mixed-integer programming problem which is very dif-
ficult to find the optimal solution, Li et al. [18] proposed
to relax (2) and finally formulated it as a solvable Multiple
Kernel Learning (MKL) problem [23]. However, due to the
enumeration for all possible labeling of instances in each
positive bag, the training process of MIL-CPB [18] will be
very slow if there exist many positive bags or each positive
bag contains many instances.

4. Batch Mode Adaptive Multiple Instance
Learning (BAMIL)

In the following, we define I as the identity matrix and
0,1 ∈ Rn as the vectors of all zeros and ones, respectively.
The inequality v = [v1, . . . , vn]

⊤ ≥ 0 means that vi ≥ 0
for i = 1, . . . , n.

4.1. The Batch Mode Adaptive MIL Framework

In order to accelerate the training process for instance-
level MIL methods, in this section we propose a novel batch
mode adaptive MIL framework to recursively learn a robust
classifier by using batch of labeled training bags with unla-
beled instances as well as adapting a pre-learned classifier
at each time.

As illustrated in Figure 1, the existing instance-level
MIL methods (e.g., MIL-CPB) train classifiers on all train-
ing bags (e.g., 4 positive bags and 4 negative bags on the
left side of Figure 1). In contrast, we propose to train the
BAMIL classifier by using a batch of training bags (e.g., 2
positive bags and 2 negative bags in Batch 2 on the right
side of Figure 1) at each time, as well as adapting the latest
classifier which was learned by using the previous training
batch (e.g., 2 positive bags and 2 negative bags in Batch 1).
Our batch mode adaptive framework costs less time than the
existing instance-level MIL methods in the training process,
as the time complexity of the instance-level MIL methods
are non-linear with respect to the number of training bags.
On the other hand, at each time, our MIL classifier not only
learns from the current batch of training data but also con-
tains the information from the previous training batches.

Formally, we denote the decision function (a.k.a., clas-
sifier) by fτ at time τ . Inspired by the existing online

Figure 1. Illustration of the difference between existing instance-
level MIL methods and our proposed framework BAMIL. (a) Ex-
isting instance-level MIL methods learn classifiers (green line) by
using all training bags; (b) Our BAMIL uses one batch of training
bags to learn a new classifier (green line) which is adapted from
the latest pre-learned classifier (solid yellow line).

learning methods [3, 17], we learn fτ on the τ -th batch of
training data by updating the classifier fτ−1 learned at time
τ − 1, which is efficient and can be applied for dynamic en-
vironments such as object tracking. Motivated by the recent
work [10] which successfully integrates pre-learned classi-
fiers in the decision function, we define fτ on one instance
x as follows:

fτ (x) = γτfτ−1(x) + ∆fτ (x) (3)

where γτ is the weight of fτ−1 and ∆fτ (x) is called the
perturbation function. Given the currently available batch
of labeled training bags with unlabeled instances, we use
them to learn γτ and ∆fτ (x) in (3).

Let us denote the instances at τ -th batch as {x̂i|i =
1, . . . , nτ} where the nτ is the number of instances, and
denote the bags as {B̂I |I = 1, . . . , Nτ}. For ease of de-
scription, we will replace x̂ and B̂ with x and B unless
specifically mentioned.

We propose to learn the weight γ and the perturbation
function ∆f(x) in (3) at time τ 1 by minimizing the follow-
ing structural risk functional for the instance-level MIL:

min
yi,fτ ,γ

Ω(fτ ) + λγ2 + C
n∑

i=1

ℓ(fτ ,xi, yi), (4)

where λ,C > 0 are the tradeoff parameters, Ω(f) regu-
larizes the decision function f , ℓ(·) is a loss function de-
fined on each instance. It is worth mentioning that existing
instance-level MIL methods [2, 13, 19, 18] can be readily
incorporated into our framework.

4.2. Proposed Formulation

Let us define the perturbation function ∆fτ (x) in (3) at
time τ as ∆fτ (x) = w⊤ϕ(x) + b. Given the currently

1For better presentation, we omit the superscript τ in all the notations
except for fτ unless specifically mentioned.
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available batch of the labeled training bags with unlabeled
instances x1, . . . ,xn, we learn the parameters w, b in the
perturbation function and the weight γ in the adapted clas-
sifier (3) by using our proposed BAMIL as follows:

min
y∈Y,

w,b,γ,ρ,ξi

1

2

(
∥w∥2 + b2 + C

n∑
i=1

ξ2i + λγ2

)
− ρ, (5)

s.t. yif
τ (xi) ≥ ρ− ξi, i = 1, . . . , n,

where λ is a parameter for the penalty of γ (λ is em-
pirically set to 0.1 in the experiments). Compared with
the formulation of MIL-CPB in (2), the constraints in (5)
are based on the adaptive classifier with one more vari-
able γ. However, we will show that after the reformula-
tion, we can easily solve the problem in (5) similarly as
in [18]. Let us denote φ(x) = [ϕ(x)⊤, 1, 1√

λ
fτ−1(x)]⊤

and v = [w⊤, b,
√
λγ]⊤. We can rewrite the decision func-

tion of BAMIL as fτ (x) = v⊤φ(x) and the optimization
problem in (5) as follows:

min
y∈Y,v,ρ,ξi

1

2
∥v∥2 − ρ+ C

n∑
i=1

ξ2i , (6)

s.t. yif
τ (xi) ≥ ρ− ξi, i = 1, . . . , n.

The dual of (6) is lower bounded by the following opti-
mization problem [18]:

max
α∈A

{
max

θ
−θ :θ≥ 1

2
α⊤
(
K◦yy⊤+ 1

C
I

)
α,∀y∈Y

}
, (7)

where α = [α1, . . . , αn]
⊤ is a vector of the dual variables,

A = {α|α ≥ 0,α⊤1 = 1} is the feasible set of α,
K = [k(xi,xj)]n×n = [φ(xi)

⊤φ(xj)]n×n is a kernel ma-
trix, and ◦ denotes the element-wise product between two
matrices/vectors. By replacing the inner optimization prob-
lem in (7) with its dual form with respect to θ, we can fur-
ther rewrite the above optimization problem by introducing
the dual variables dm’s for the constraints in (7) as follows:

min
d∈D

max
α∈A

−1

2
α⊤

 ∑
m:ym∈Y

dmK◦ym(ym)⊤+
1

C
I

α, (8)

where D = {d|d ≥ 0,d⊤1 = 1} and d = [d1, . . . , d|Y|].
Note that (8) is a Multiple Kernel Learning (MKL) [23]
problem by regarding each K ◦ ym(ym)⊤ as a base ker-
nel. Due to the size of Y , the number of base kernels could
be of exponential size, which makes solving (8) infeasible.
Fortunately as discussed in [18], only a small number (i.e.,
M ) of constraints are needed to achieve a good approxima-
tion to the optimality of (8). Following [18], we employ the
cutting-plane algorithm [15] to iteratively find most violated
labeling candidates (i.e., ym’s) for such M constraints and
finally train an MKL classifier. The details are depicted in
Algorithm 1.

Algorithm 1 Cutting-plane algorithm for BAMIL
Require: Training bags {(BI , YI)|I = 1, . . . , N}.
Ensure: Variables d, α in the classifier and a set C con-

taining violated y’s.
1: Initialize the label vector y = [y1, . . . ,yn], where n is

the total number of instances and instance label yi = YI

for each xi ∈ BI . Let C = {y}.
2: repeat
3: Solve α and d in(8) with MKL solver based on C.
4: Use α to select a violated y ∈ Y and set C = y ∪ C.
5: until The convergence criterion is reached.
6: return α, d and C.

4.3. Finding The Most Violated Labeling Candidate
For each each iteration in the cutting-plane algorithm,

we find the most violated y by solving the following opti-
mization problem:

max
y∈Y

α⊤(K ◦ yy⊤)α. (9)

However, (9) is an integer programming problem and find-
ing its global optimum is computationally intractable for
large-scale problems. In [18], Li et al. proposed to solve
(9) by restricting the size of each positive bag and then enu-
merating all feasible labelings for each bag. Although their
strategy can relieve the computational burden to some ex-
tent, it still cannot help solve the problems in dynamic en-
vironments such as object tracking. To this end, we develop
a much more efficient algorithm to solve (9) which can be
readily applied for dynamic environments. Specifically, we
first rewrite (9) as follows:

max
y∈Y

α⊤(K ◦ yy⊤)α = max
y∈Y

∥∥∥∥∥
n∑

i=1

αiyiφ̃(xi)

∥∥∥∥∥
2

2

, (10)

Note that if K is the liner kernel, we have φ̃(x) = φ(x) =
[x⊤, 1, 1√

λ
fτ−1(x)]⊤; if K is non-linear, we apply eigen-

value decomposition on K to obtain φ̃(x). Let us define
SI as the instance indices in bag BI . Because maximizing
(10) is equivalent to maximize its square root, by using the
triangle inequality we have:

max
y∈Y

∥∥∥∥∥
n∑

i=1

αiyiφ̃(xi)

∥∥∥∥∥
2

= max
y∈Y

∥∥∥∥∥
N∑

I=1

∑
i∈SI

αiyiφ̃(xi)

∥∥∥∥∥
2

≤ max
y∈Y

N∑
I=1

∥∥∥∥∥∑
i∈SI

αiyiφ̃(xi)

∥∥∥∥∥
2

. (11)

We present Proposition 1 to find the violated y as fol-
lows:
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Proposition 1. If we use the ℓ∞-norm to approximate the
ℓ2-norm in (11), and rewrite it as:

max
y∈Y

N∑
I=1

(
max

j=1,...,l

∣∣∣∣∣∑
i∈SI

αiyix
(j)
i

∣∣∣∣∣
)
, (12)

where φ̃(x) = [x(1), . . . , x(l)]⊤ with dimensionality l is de-
fined for simplicity, then the optimal y for (12) can be ob-
tained for each positive bag using Algorithm 2.

Proof. The proof is derived in the Appendix A.

Note that in Algorithm 2, the most time-consuming part
is the sorting operation on the instances for each dimension,
with its time complexity as O(l|BI | log(|BI |)) for each pos-
itive bag. As shown in our experiments (see Section 5.1),
our proposed algorithm for finding the most violated y is at
least 50 times faster than that used in [18].

Algorithm 2 Finding the most violated y

Require: A positive bag BI = {xi|i ∈ SI}, the corre-
sponding αi for each xi, and feature dimensionality l

Ensure: The most violated y
1: Define zmax = −∞.
2: for j = 1 : l do
3: Set c = [c1, . . . , c|BI |], where ci = αix

j
i .

4: Sort the elements of c in descending order, denoted
as ĉ where ĉi = co(i) and o(·) is the indices mapping
from ĉ to c.

5: Define p as the number of positive elements in c, and
q = max{p, µ|BI |}. Then we get the candidate label
vector yj , in which yjo(i) = 1 for i = 1, . . . , q, and
−1 for others.

6: Let z =
∑

i ciy
j
i .

7: if z > zmax then
8: Set y = yj and zmax = z.
9: end if

10: Set c = −c and repeat steps 4–9.
11: end for
12: return y

4.4. The Decision Function

After obtaining the optimal ατ and dτ on the τ -th batch,
we can derive the ∆fτ (x) as follows:

∆fτ (x)=
∑

i:ατ
i ̸=0

ατ
i ỹik̃(x,xi)+b, (13)

where ỹ =
∑

m:ym∈C d
τ
mym and k̃(x,xi) = ϕ(x)⊤ϕ(xi).

We can also derive the γτ as follows:

γτ =
1

λ

∑
i:ατ

i ̸=0

ατ
i ỹif

τ−1(xi) (14)

Let us define α̂τ = [γτ α̂τ−1⊤,ατ⊤]⊤, and b̂τ =

γτ b̂τ−1 + bτ . Recall the decision function fτ (x) defined
in (3), then finally we get the decision function as follows:

fτ (x) =
∑

i:α̂τ
i ̸=0

α̂τ
i ỹik̃(x,xi) + b̂τ (15)

Note that the above decision function has the same form as
the standard SVM, so the testing procedure will also be fast.

5. Experiments
In this section, we evaluate our proposed BAMIL on the

NUS-WIDE data set [8] for text-based image retrieval by
using bags of images, and we also apply BAMIL for object
tracking.

5.1. TextBased Image Retrieval

Dataset and experimental setup: For text based image re-
trieval, we conduct experiments on the NUS-WIDE dataset
which consists of 269,648 images from 81 annotated con-
cepts. Each image is associated with descriptive tags which
can be used for keyword based search. Similar to [18],
we extract and concatenate three types of visual features
for each image: 225-dimensional Grid Color Moment, 128-
dimensional Wavelet Texture and 73-dimensional Edge Di-
rection Histogram. And then each image is represented
as a 119-dimensional visual feature vector after perform-
ing PCA with 90% energy preserved. We also extract
200-dimensional term-frequency feature using 200 frequent
words as suggested in [18]. And the visual feature v and
textual feature t are further combined as the final feature
representation for each image: x = [0.1v⊤, t⊤]⊤.

We compare our BAMIL with four most related MIL
methods, WsMIL [24], MIL-CPB [18], PMIL-CPB [18]
and Ins-KI-SVM [19]. We also compare with a variation
of MIL-CPB by replacing its costly enumeration procedure
for finding the most violated y with our proposed efficient
algorithm discussed in Section 4.3, which is referred to as
MIL-CPBfast here. Moreover, we report the training time
of MIL-CPB, MIL-CPBfast and BAMIL on this dataset.

For each concept, we retrieve relevant images by search-
ing the keyword (i.e., concept name) in the dataset and rank
the relevant images according to the image ranking score as
r(x) = −a+ 1

b , where a is the rank position of the keyword
in the tag list of image x, and b is the total number of tags
associated with x. We then select the top-ranked relevant
images to construct N positive training bags and also ran-
domly sample N negative training bags of irrelevant images
from the image dataset.

Following the experimental studies in [18], we let each
bag contain 15 instances and set N as 25. Therefore, there
are totally 375 relevant images and 375 irrelevant images in
all training bags. We train classifiers by using all 50 training
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Table 1. MAPs (%) of all methods over 81 concepts on the NUS-
WIDE dataset.

WsMIL MIL-CPB PMIL-CPB MIL-CPBfast BAMIL
MAP 59.7 61.5 63.3 61.2 62.7

bags for the two methods Ins-KI-SVM and MIL-CPBfast.
We also adopt the progressive scheme in PMIL-CPB [18]
to obtain more confident positive training bags for our pro-
posed method BAMIL. Specifically, we initialize the first
batch of training data by using the 5 positive bags obtained
from the top-ranked 75 images as well as using 5 randomly
sampled negative bags. After learning the BAMIL classifier
by using one batch, we rank the initially selected 375 rele-
vant images again according to their predicted decision val-
ues, and then construct a new batch of training data by using
the same strategy to construct 5 positive and 5 negative bags
to learn a new BAMIL classifier. We repeat this process for
τ times to obtain the final BAMIL classifier. For MIL-CPB,
PMIL-CPB, MIL-CPBfast and BAMIL, We empirically set
the positive portion µ as 0.6 for the MIL constraints in (1).

For each method, we train a one-versus-all classifier by
using the Gaussian kernel with the bandwidth parameter set
as the variance of the training data. Top-100 Mean Average
Precisions (MAPs) are reported in the experiments.
Performance analysis: Table 1 reports the MAPs of all
methods over 81 concepts on the NUS-WIDE dataset.
The results of WsMIL, MIL-CPB, PMIL-CPB are adopted
from [18]. The MAP of BAMIL reported in the table is
obtained by using τ = 4. We do not include the MAP
of Ins-KI-SVM in Table 1, because it is much lower than
other methods (i.e., only 49.0%). The possible explana-
tion is that finding the key instance for each positive bags
is not suitable in the TBIR application. From the results,
we observe that MIL-CPB and MIL-CPBfast outperform
WsMIL, which indicates that the MIL constraints in (1) is
beneficial for the TBIR task. And MIL-CPBfast is slightly
worse than MIL-CPB, which is due to the relaxation of our
proposed efficient algorithm for finding the most violated y.
Moreover, BAMIL achieves a better performance than that
of MIL-CPBfast, which demonstrates that we can learn a
more robust BAMIL classifier by adapting the pre-learned
classifier based on our proposed BAMIL framework.

We also investigate the average training time over the
81 concepts on the NUS-WIDE dataset for different meth-
ods. As PMIL-CPB is to incrementally train MIL-CPB for
multiple times and the time complexity should be similar,
we only compare MIL-CPB and our methods here. The re-
sults are showed in Talbe 2. All methods are performed
on a workstation with 3.3GHz CPU. We can observe that
MIL-CPBfast is much faster than MIL-CPB as we using
more efficient algorithm to finding the violated y. More-
over, our BAMIL is about 4 times faster than MIL-CPBfast

and only takes 7 seconds which makes instance-level MIL
practicable for TBIR system considering we only use unop-

Table 2. Average training time (seconds) over 81 concepts on the
NUS-WIDE dataset.

MIL-CPB MIL-CPBfast BAMIL
Traing time 1577 33.92 7.11
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Figure 2. MAPs and average training time of MIL-CPBfast and
BAMIL over 81 concepts on the NUS-WIDE dataset after learning
for τ times compared with that of MIL-CPBfast.

timized MATLAB code.
Figures 2 shows the MAPs and average training time

of MIL-CPBfast and BAMIL with respect to the number
of iterations τ . From Figures 2(a), we observe that the
MAP of BAMIL increases rapidly when τ ≤ 4. After that,
it does not fluctuate much and becomes comparable with
MIL-CPBfast. When τ = 4, BAMIL achieves the best
retrieval performance, and meanwhile, its training time is
four times less than that of MIL-CPBfast (see Figure 2(b)).
Even after learning for τ = 10 times, the training of
BAMIL is still two times faster than that of MIL-CPBfast.
These observations demonstrate that our proposed BAMIL
can quickly achieve similar or even better retrieval perfor-
mances of MIL-CPBfast after learning the batch mode clas-
sifier for only a few times, while spending much less time
for training.

5.2. Object Tracking

Datasets and experimental setup: We use 8 publicly avail-
able video sequences for object tracking [3, 17]: “David
Indoor”, “Sylvester”, “Occluded Face”, “Occluded Face2”,
“Girl”, “Tiger 1”, “Tiger 2” and “Coke Can”. These videos
contain various challenges, such as the changes of lighting,
scale and pose, as well as fast motion and frequent occlu-
sions [3].

We compare our proposed BAMIL with three tracking
methods, FragTrack [1], MILTrack [3] and MIO [17]. Sim-
ilar to the settings in [3, 17], for each training video frame
we construct one positive bag by randomly sampling 50 im-
age patches which are close to the predicted object location,
while three negative bag are constructed by randomly se-
lecting 50 image patches that are unlikely to contain the ob-
ject. For each patch (considered as an instance), we extract
a vector of Haar-like features. Then at each time, we learn
the BAMIL classifier by using the batch of one positive and
three negative training bags obtained from this frame. The
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Figure 3. Error plots for eight video sequences.

Table 3. Average center location errors (pixels). The best results
are marked in bold font and the second best results are underlined.

video clips FragTrack MILTrack MIO BAMIL
David Indoor 46 23 15 16

Sylvester 13 11 13 9
Occluded Face 6 27 14 16

Occluded Face 2 13 20 13 19
Girl 22 32 31 21

Tiger 1 56 15 24 9
Tiger 2 39 17 23 14

Coke Can 38 21 22 18
Mean 29 21 19 15

positive bag from the first frame is added as training bag
in following batches to improve the robustness. All meth-
ods are evaluated by using average center location errors
(pixels) [3, 17], which is defined as the distance in pixel be-
tween predicted location and the ground truth location. Due
to the randomness in selecting Haar-like features as well as
the training instances, we run each video for five times as
in [3, 17] and report the average results.
Performance analysis: Table 3 reports the average center
location errors of different methods over all frames for each
video sequence. The results of FragTrack, MILTrack and
MIO are from the Table 2 in [17]. Figure 3 plots the average
error per frame in each video sequence. From the results,
we observe that our BAMIL method achieve the best perfor-
mance on 5 of 8 videos, and outperforms other two online
MIL methods in terms of the mean of average center loca-
tion errors over 8 videos. These observations clear show
that our proposed method BAMIL can also work for dy-
namic environments in object tracking. Finally, we present
some screen shots of the tracking results for “Tiger 2” and
“Coke Can” in Figure 4 using the same frames in [3] or [17].

6. Conclusions and Future Work
While instance-level MIL methods have been exploited

in various computer vision tasks, the expensive cost for

training models limits this type of MIL methods from a
wider range of vision applications. To reduce the com-
putational cost, in this work, we developed a novel batch
mode adaptive framework to accelerate the training process
of instance-level MIL methods and also make them appli-
cable for the applications in dynamic environments such as
object tracking. We additionally take the recent work MIL-
CPB as a showcase to evaluate our framework for two appli-
cations (i.e., TBIR and object tracking). Promising results
clearly demonstrate the efficiency and effectiveness of our
proposed method on the NUS-WIDE dataset for TBIR as
well as on another challenging dataset for object tracking.

In the future, we plan to conduct a systematical study
of our framework using other instance-level MIL methods
for a broad range of computer vision tasks, such as video
classification, action recognition, image annotation and so
on. Moreover, theoretical studies on the convergence and
the regret will also be investigated for our framework.
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A. Proof of Proposition 1
Proof. We remove the absolute sign in (12), and rewrite it
as:

max
y∈Y


N∑

I=1

max
j=1,
...,l

∑
i∈SI

αiyix
(j)
i

,
N∑

I=1

max
j=1,
...,l

−
∑
i∈SI

αiyix
(j)
i

. (16)

Take the first term as example, we interchange the maxy
and maxj :

max
j=1,...,l

max
y∈Y

N∑
I=1

(∑
i∈SI

αiyix
(j)
i

)
(17)
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(a) David Indoor
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(b) Girl

#0385 #0385#0920 #0385#0920#1343
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Figure 4. Screen shots of the tracking results (BAMIL —; MIO - -; MILTrack -·-; FragTrack · · · ).

Since the constraints are applied on each bag, we can sepa-
rately optimize the problem in (17) on each dimension and
on each bag as follows:

max
yi∈{±1}:i∈SI

∑
i∈SI

αiyix
(j)
i . (18)

The objective function in (18) is a linear combination on
yi, so the maximum is achieved when yi = +1 for posi-
tive αix

(j)
i and yi = −1 otherwise. Considering the con-

straints on positive bags in (1), the optimal solution is to
sort the αix

(j)
i in the descending order and to assign pos-

itive labels for the top µ|BI | instances, and continually to
assign positive to the remaining instances if the correspond-
ing αix

(j)
i is positive. Then the optimal solution to (17) is

y = [y⊤
1 , . . . ,y

⊤
N ]⊤ where yI is the optimal solution for

each bag. The above proof also holds for the second term
in (16).
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