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Domain Generalization and Adaptation using
Low Rank Exemplar SVMs

Wen Li, Zheng Xu, Dong Xu, Dengxin Dai, and Luc Van Gool

Abstract—Domain adaptation between diverse source and target domains is a challenging research problem, especially in the
real-world visual recognition tasks where the images and videos consist of significant variations in viewpoints, illuminations, qualities,
etc. In this paper, we propose a new approach for domain generalization and domain adaptation based on exemplar SVMs.
Specifically, we decompose the source domain into many subdomains, each of which contains only one positive training sample and all
negative samples. Each subdomain is relatively less diverse, and is expected to have a simpler distribution. By training one exemplar
SVM for each subdomain, we obtain a set of exemplar SVMs. To further exploit the inherent structure of source domain, we introduce a
nuclear-norm based regularizer into the objective function in order to enforce the exemplar SVMs to produce a low-rank output on
training samples. In the prediction process, the confident exemplar SVM classifiers are selected and reweigted according to the
distribution mismatch between each subdomain and the test sample in the target domain. We formulate our approach based on the
logistic regression and least square SVM algorithms, which are referred to as low rank exemplar SVMs (LRE-SVMs) and low rank
exemplar least square SVMs (LRE-LSSVMs), respectively. A fast algorithm is also developed for accelerating the training of
LRE-LSSVMs. We further extend Domain Adaptation Machine (DAM) to learn an optimal target classifier for domain adaptation, and
show that our approach can also be applied to domain adaptation with evolving target domain, where the target data distribution is
gradually changing. The comprehensive experiments for object recognition and action recognition demonstrate the effectiveness of our
approach for domain generalization and domain adaptation with fixed and evolving target domains.

Index Terms—latent domains, domain generalization, domain adaptation, exemplar SVMs.

F

1 INTRODUCTION

DOMAIN adaptation techniques, which aim to reduce the
domain distribution mismatch when the training and

testing samples come from different domains, have been
successfully used for a broad range of vision applications
such as object recognition and video event recognition [1],
[2], [3], [4], [5], [6]. As a related research problem, domain
generalization differs from domain adaptation, because it
assumes that the target domain samples are not available
during the training process. Without focusing on the gen-
eralization ability on the specific target domain, domain
generalization techniques aim to better classify testing data
from any unseen target domain [7], [8]. Please refer to
Section 2 for a brief review of existing domain adaptation
and domain generalization techniques.

For visual recognition, most existing domain adaptation
methods treat a whole dataset as one domain [1], [2], [3], [4],
[5], [6]. However, the real world visual data is usually quite
diverse. The images and videos could be captured from ar-
bitrary viewpoints, under different illuminations, and using
different equipments. In other words, the distribution of
visual domain is complex, thus it is challenging to reduce
the distribution mismatch between different domains.

Several recent works proposed to partition the source
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domain into multiple hidden domains [9], [10]. While those
works showed the benefits to exploit latent domains in the
source data for improving domain adaptation performance,
it is a non-trivial task to discover the characteristic latent
domains by explicitly partitioning the training samples into
multiple clusters because many factors (e.g., pose and il-
lumination) overlap and interact in images and videos in
complex ways [10].

In this work, we propose a new approach for domain
generalization and adaptation by exploiting the intrinsic
structure of positive samples from latent domains without
explicitly partitioning the training samples into multiple
clusters/domains. Our work builds up the recent ensemble
learning method exemplar SVMs, in which we aim to train a
set of exemplar classifiers with each classifier learnt by using
one positive training sample and all negative training sam-
ples. Under the context of domain adaptation, the training
set for learning each exemplar classifier (i.e., one positive
training sample and all negative training samples) can be
regarded as one subdomain, which is relatively less diverse
and with a simpler distribution. So each learnt exemplar
classifier is expected to have good generalization capability
for one certain data distribution. When predicting the test
sample from an arbitrary distribution, those exemplar clas-
sifiers are then combined to properly fit the target domain
distribution and produce good prediction results.

To further enhance the discriminative capability of the
learnt exemplar classifiers, we exploit the intrinsic latent
structure in the source domain, as inspired by the re-
cent latent domain discovery works [9], [10]. In particular,
positive samples may come from multiple latent domains
characterized by different factors. For the positive samples
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captured under similar conditions (e.g., frontal-view poses),
their predictions from each exemplar classifier are expected
to be similar to each other. Using the predictions from
all the exemplar classifiers as the feature of each positive
sample, we assume the prediction matrix consisting of the
features of all positive samples should be low-rank in the
ideal case. Based on this assumption, we formulate a new
objective function by introducing a nuclear norm based reg-
ularizer on the prediction matrix into the objective function
of exemplar SVMs in order to learn a set of more robust
exemplar classifiers for domain generalization and domain
adaptation. Therefore, we refer to our new approach as Low
Rank Exemplar SVMs, or LRE-SVMs in short.

During the testing process, we can directly use the whole
or a selected set of learnt exemplar classifiers for the domain
generalization task when the target domain samples are
not available during the training process. For the domain
adaptation problem where the unlabeled target domain data
is available, we propose an effective method to re-weight the
selected set of exemplar classifiers based on the Maximum
Mean Discrepancy (MMD) criterion, and further extend the
Domain Adaptation Machine (DAM) method to learn an
optimal target classifier.

In our preliminary conference paper [11], we have for-
mulated our LRE-SVMs approach by using the logistic
regression method to learn each exemplar classifier, which is
computational expensive as we need to learn one classifier
for each positive training sample. To improve the efficiency
in the training process, in this paper, we formulate a new
objective function based on the least square SVM method,
and develop a fast algorithm for learning each exemplar
classifier. For the testing process, we also extend our method
to address the domain adaptation problem with evolving
target domain, where the test data comes one by one, and
the target data distribution may change gradually [12].
We conduct comprehensive experiments for various visual
recognition tasks using three benchmark datasets, and the
results clearly demonstrate the effectiveness of our approach
for domain generalization, and domain adaptation with
fixed and evolving target domains.

2 RELATED WORK

Traditional domain adaptation methods can be roughly cat-
egorized into feature based approaches and classifier based
approaches. The feature based approaches aim to learn
domain invariant features for domain adaptation. Kulis et
al. [1] proposed a distance metric learning method to re-
duce domain distribution mismatch by learning asymmetric
nonlinear transformation. Gopalan et al. [2] and Gong et
al. [3] proposed two domain adaptation methods by in-
terpolating intermediate domains. To reduce domain distri-
bution mismatch, some recent approaches learnt a domain
invariant subspace [13] or aligned two subspaces from both
domains [14].

Moreover, with the advance of deep learning techniques,
a few works have also proposed to learn domain invariant
features based on the convolutional neural network (CNN)
for image recognition [15], [16], [17]. Long et al. proposed
to learn CNN features while minimizing the MMD of the
features between two domains [18]. Ganin and Lempitsky

proposed to simultaneously minimize the classification loss
and maximize the domain confusion with a CNN for un-
supervised domain adaptation [16], while Tzeng et al. em-
ployed soft-label generated from source domain to train the
CNN for target samples [15]. Li et al. [17] proposed to apply
the batch normalization method for domain adaptation with
the CNN.

Our work is different from those works in two folds.
First, those works focus on learning domain-adaptive fea-
tures for a specifical target domain, while our approaches
can be applied for domain generalization problem where the
target domain is unseen during the training process. Second,
our approaches and those methods are at different stages
for visual recognition. Instead of learning feature represen-
tations, our approaches aim to learn robust classifiers, thus
the learnt feature representations from their method can be
used as input of our approaches if there still exists domain
distribution mismatch.

Classifier based approaches directly learn the classi-
fiers for domain adaptation, among which SVM based ap-
proaches are the most popular ones. Duan et al. [4] proposed
Adaptive MKL based on multiple kernel learning (MKL),
and a multi-domain adaptation method by selecting the
most relevant source domains [19]. The work in [20] devel-
oped an approach to iteratively learn the SVM classifier by
labeling the unlabeled target samples and simultaneously
removing some labeled samples in the source domain. For
the unsupervised domain adaptation scenario, training do-
main adaptive classifiers by reweighing the source training
samples has been widely exploited for reducing the distri-
bution mismatch between the source and target domains.
Various approaches have been proposed to learn the weights
(a.k.a. density ratios) based on different strategies and crite-
ria in the literature, which includes Kernel Mean Machting
(KMM) [21], the MaxNet based methods [22], Kullback-
Leibler Importance Estimation Procedure (KLIEP) [23], the
Logistic Regression based method (LogReg) [24], and Large
Scale KLIEP (LS-KLIEP) [25].

There are a few works specifically designed for domain
generalization. Muandet et al. proposed to learn domain
invariant feature representations [7]. Given multiple source
datasets/domains, Khosla et al. [8] proposed an SVM based
approach, in which the learnt weight vectors that are com-
mon to all datasets can be used for domain generaliza-
tion. Ghifary et al. [26] proposed an approach for learn-
ing domain-invariant features based on the auto-encoder
method. Inspired by our preliminary conference work [11],
Niu et al. [27] proposed an approach for multi-view domain
generalization.

Our work is more related to the recent works for dis-
covering latent domains [9], [10]. In [9], a clustering based
approach is proposed to divide the source domain into dif-
ferent latent domains. In [10], the MMD criterion is used to
partition the source domain into distinctive latent domains.
However, their methods need to decide the number of latent
domains beforehand. In contrast, our method exploits the
low-rank structure from latent domains without requiring
the number of latent domains. Moreover, we directly learn
the exemplar classifiers without partitioning the data into
clusters/domains.

Our work builds up the recent work on exemplar
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SVMs [28]. In contrast to [28], we introduce a nuclear norm
based regularizer on the prediction matrix in order to exploit
the low-rank structure from latent domains for domain gen-
eralization. Recently, inspired by our preliminary conference
work [11], Xu et al. [29] also employed nuclear norm to ex-
ploit the low-rank structure for sub-categorization. In multi-
task learning, the nuclear norm based regularizer is also
introduced to enforce the related tasks share similar weight
vectors when learning the classifiers for multiple tasks [30],
[31]. However, their works assume the training and testing
samples come from the same distribution without consider-
ing the domain generalization or domain adaptation tasks.
Moreover, our regularizer is on the prediction matrix such
that we can better exploit the structure of positive samples
from multiple latent domains.

Domain adaptation with changing distribution also at-
tracts attentions from computer vision researchers. Lee et
al. [32] studied the change of car styles through the past
decades. Hoffman et al. [12] studied the domain adaptation
problem with evolving target domain, where the distribu-
tion of target domain is gradually changing. They proposed
an approach to learn the subspaces along manifold for
domain adaptation. Lampert [33] studied the time-varying
data problem, where the source domain data distribution is
varying, and proposed a method for predicting the data in
the future.

3 LOW RANK EXEMPLAR SVMS

In this section, we introduce the formulation of our low
rank exemplar SVMs as well as the optimization algorithm.
For ease of presentation, in the remainder of this paper, we
use a lowercase/uppercase letter in boldface to represent a
vector/matrix. The transpose of a vector/matrix is denoted
by using the superscript ′. A = [aij ] ∈ Rm×n defines a
matrix A with aij being its (i, j)-th element for i = 1, . . . ,m
and j = 1, . . . , n. The element-wise product between two
matrices A = [aij ] ∈ Rm×n and B = [bij ] ∈ Rm×n is
defined as C = A ◦ B, where C = [cij ] ∈ Rm×n and
cij = aijbij .

3.1 Exemplar SVMs
The exemplar SVMs model was first introduced in [28] for
object detection. In exemplar SVMs, each exemplar classifier
is learnt by using one positive training sample and all the
negative training samples. Let Xs = X+∪X− denote the set
of training samples, in which X+ = {x+

1 , . . . ,x
+
n } is the set

of positive training samples, and X− = {x−
1 , . . . ,x

−
m} is the

set of negative training samples. Each training sample x+ or
x− is a d-dimensional column vector, i.e., x+,x− ∈ Rd. We
first develop our LRE-SVMs approach based on the logistic
regression method, and then introduce a variant based on
the formulation of least square SVMs for improving the effi-
ciency of the training process. Specifically, given any sample
x ∈ Rd, the prediction function using logistic regression can
be written as:

p(x|wi) =
1

1 + exp(−w′
ix)

, (1)

where wi ∈ Rd is the weight vector in the i-th exemplar
classifier trained by using the positive training sample x+

i

and all negative training samples1. By defining a weight
matrix W = [w1, . . . ,wn] ∈ Rd×n, we formulate the
learning problem as follows,

min
W
∥W∥2F + C1

n∑
i=1

l(wi,x
+
i ) + C2

n∑
i=1

m∑
j=1

l(wi,x
−
j ), (2)

where ∥·∥F is the Frobenius norm of a matrix, C1 and C2 are
the tradeoff parameters analogous to C in SVM, and l(w,x)
is the logistic loss, which is defined as:

l(wi,x
+
i ) = log(1 + exp(−w′

ix
+
i )), (3)

l(wi,x
−
j ) = log(1 + exp(w′

ix
−
j )). (4)

3.2 Exemplar SVMs for Domain Generalization and
Adaptation
Each exemplar classifier is learnt to discriminate a unique
exemplar positive training sample from all the negative
samples, so the differences between exemplar SVM clas-
sifiers represent the differences between positive training
samples. In other words, the exemplar classifier also learns
the unique property of each exemplar positive training sam-
ple. Under the context of domain adaptation, the training
data for learning each exemplar SVM classifier (i.e., one
positive training sample and all negative training samples)
can be considered as a small subdomain. By learning an
exemplar classifier for each subdomain, we expect that the
classifier encodes not only the corresponding category infor-
mation of the exemplar positive sample, but also the domain
property (e.g., pose, background, illumination, etc.) of the
exemplar positive training sample. In the testing process,
for any given target sample or target domain, we combine
the exemplar classifiers with proper weights, and expect
the domain properties of training data are also similar to
those of target samples, thus producing better predictions
by using the combined classifiers (see Section 5.2 for more
details).

Formally, let us denoteDs
i as the underlying distribution

of a subdomain formed by {x+
i ,x

−
j |mj=1}, and denote fi as

the learnt exemplar classifier. We also denote the distribu-
tion of the test data as Dt. It has been shown in the previous
works [34], [35] that the error of fi on the test data can be
bounded as errt(fi) ≤ errs(fi) + dist(Ds

i ,Dt) + ∆, where
errt(fi) is the test error, errs(fi) is the training error of
fi, dist(Ds

i ,Dt) is the distance between two distributions
under certain measurement, and ∆ is a constant term. The
distribution distance term dist(Ds

i ,Dt) plays an important
role in the generalization bound for domain adaptation.
Given two different exemplar classifiers fi and fj , their
training sets share the same negative training samples, so
the difference between the underlying distributions Di and
Dj is from the two exemplar positive training samples xi

and xj . This means that dist(Ds
i ,Dt) (resp., dist(Ds

j ,Dt))
tends to be decided by whether xi (resp., xj) is closer to the
distribution of the test data.

The exemplar SVMs can be directly used for domain
generalization, as the target domain unlabeled data is not
required in the training stage. Generally, in the domain

1. Although we do not explicitly use the bias term in the prediction
formulation, in our experiments we append 1 to the feature vector of
each training sample.
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generalization task, the test data is assumed to come from
an arbitrary target domain that is unseen in the training
procedure. However, based on the above analysis, the gen-
eralization error of exemplar classifiers tends to be huge if
the target domain distribution is considerably different from
those of all the subdomains (i.e., dist(Ds

i ,Dt) is huge ∀i).
For domain adaptation, the traditional domain adaptation
methods [1], [2], [3] usually aim to learn a common subspace
or an adaptive classifier to handle the domain distribution
mismatch. Those methods can be regarded as using the
global distribution information from the source and tar-
get domains for domain adaptation. However, for visual
recognition applications where the training and test data are
with large variances, the data distribution of one domain
is usually complex, so it might be challenging to match
two distributions by using global distribution information.
In contrast, our approach focuses on each positive sample
by using exemplar SVMs, and learns the local information
of each exemplar. Each exemplar classifier encodes certain
local distribution information related to this exemplar. So it
is more flexible to match a single target sample or even a
target domain with different data distributions.

3.3 Low-Rank Exemplar SVMs

A drawback of exemplar SVMs is that training exemplar
classifier with only one exemplar positive training sample
might be sensitive to the noise. For example, the exemplar
classifiers of two images with similar objects might produce
different predictions for the same test image. To this end,
we consider to discover the intrinsic latent structure in the
source training data to improve discriminate capacity of
exemplar classifiers, as inspired by the recent latent domain
discovery methods [9], [10].

Intuitively, if there are multiple latent domains in the
training data (e.g., poses, backgrounds, illuminations, etc.),
the positive training samples should also come from several
latent domains. For the positive samples captured under
similar conditions (e.g., frontal-view poses), the prediction
from each exemplar classifier is expected to be similar to
each other. Using the predictions from all the exemplar
classifiers as the feature of each positive sample, we assume
the prediction matrix consisting of the predictions of all
positive samples should be low-rank in the ideal case.
Formally, we denote the prediction matrix as G(W) =
[gij ] ∈ Rn×n, where each gij = p(x+

i |wj) is the prediction
of the i-th positive training sample by using the j-th ex-
emplar classifier. We also denote the objective of exemplar
SVMs in (2) as J(W) = ∥W∥2F + C1

∑n
i=1 l(wi,x

+
i ) +

C2

∑n
i=1

∑m
j=1 l(wi,x

−
j ). To exploit those latent domains,

we thus enforce the prediction matrix G(W) to be low-rank
when we learn those exemplar SVMs, namely, we arrive at
the following objective function,

min
W

J(W) + λ∥G(W)∥∗, (5)

where we use the nuclear norm based regularizer ∥G(W)∥∗
to approximate the rank of G(W). It has been shown that
the nuclear norm is the best convex approximation of the
rank function over the unit ball of matrices [36]. However,
it is a nontrivial task to solve the problem in (5), because

Fig. 1. An illustration of the prediction matrix G(W), where we observe
the block diagonal property of G(W) in (a). The frames from the videos
corresponding to the two blocks with large values in G(W) are also
visually similar to each other in (b).

the last term is a nuclear norm based regularizer on the
prediction matrix G(W) and G(W) is non-linear w.r.t. W.

To solve the optimization problem in (5), we introduce
an intermediate matrix F ∈ Rn×n to model the ideal G(W)
such that we can decompose the last term in (5) into two
parts: on one hand, we expect the intermediate matrix F
should be low-rank as we discussed above; on the other
hand, we enforce the prediction matrix G(W) to be close
to the intermediate matrix F. Therefore, we reformulate the
objective function as follows,

min
W,F

J(W) + λ1∥F∥∗ + λ2∥F−G(W)∥2F , (6)

which can be solved by alternatingly optimizing two sub-
problems w.r.t. W and F. Specifically, the optimization
problem w.r.t. W does not contain the nuclear norm based
regularizer, which makes the optimization much easier.
Also, the nuclear norm based regularizer only depends on
the intermediate matrix F rather than a non-linear term
w.r.t. W (i.e., the prediction matrix G(W)) as in (5), thus
the optimization problem w.r.t. F can be readily solved by
using the Singular Value Threshold (SVT) method [37] (see
Section 3.4 for the details).

Discussions: The existing latent domain discovery meth-
ods [9], [10] aim to explicitly partition the source domain
data into several clusters, each corresponding to one latent
domain. However, it is nontrivial to determine the num-
ber of latent domains, or to cluster the training samples
into multiple subsets, because many factors (e.g., pose and
illumination) overlap and interact in images and videos
in complex ways [10]. In contrast, our proposed approach
exploits the latent domain structure in an implicit way
based on the low-rank regularizer defined on the prediction
matrix.

To better understand the effect of the low-rank regu-
larizer, in Figure 1, we show an example of the learnt
prediction matrix G(W) from the “check watch” category
in the IXMAS multi-view dataset by using Cam 0 and Cam
1 as the source domain. After using the nuclear norm based
regularizer, we observe that the block diagonal property of
the prediction matrix G(W) in Figure 1(a). In Figure 1(b),
we also display some frames from the videos corresponding
to the two blocks with large values in G(W). We observe
that the videos sharing higher values in the matrix G(W)
are also visually similar to each other. For example, the first
two rows in Figure 1(b) are the videos from similar poses.
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More interestingly, we also observe that our algorithm can
group similar videos from different views into one block
(e.g., the last three rows in Figure 1(b) are the videos from the
same actor), which demonstrates it is beneficial to exploit
the latent source domains by using our approach.

3.4 Optimization
In this section, we discuss how to optimize the problem in
(6). We optimize (6) by iteratively updating W and F. The
two subproblems w.r.t. W and F are described in detail as
follows.

3.4.1 Update W:
When F is fixed, the subproblem w.r.t. W can be written as,

min
W

J(W) + λ2∥G(W)− F∥2F , (7)

where the matrix F is obtained at the k-th iteration, and
G(W) is defined as in Section 3.3. We optimize the above
subproblem by using the gradient descent technique. Let
us respectively define X+ = [x+

1 , . . . ,x
+
n ] ∈ Rd×n and

X− = [x−
1 , . . . ,x

−
m] ∈ Rd×m as the data matrices of

positive and negative training samples, and also denote
H(W) = ∥G(W) − F∥2F . Then, the gradients of the two
terms in (7) can be derived as follows,

∂J(W)

∂W
= 2W + C1X+(P+ − I) + C2X−P−,

∂H(W)

∂W
= 2X+ (G(W) ◦ (11′ −G(W)) ◦ (G(W)− F)) ,

where P+ = diag
(
p(x+

i |wi)
)
∈ Rn×n is a diagonal matrix

with each diagonal entry being the prediction on one pos-
itive sample by using its corresponding exemplar classifier,
P− = [p(x−

i |wj)] ∈ Rm×n is the prediction matrix on all
negative training samples by using all exemplar classifiers,
I ∈ Rn×n is an identity matrix, and 1 ∈ Rn is a vector with
all entries being 1.

3.4.2 Update F:
When W is fixed, we calculate the matrix G = G(W) at
first, then the subproblem w.r.t. F becomes,

min
F

λ1∥F∥∗ + λ2∥F−G∥2F , (8)

which can be readily solved by using the singular value
thresholding (SVT) method [37]. Specifically, let us denote
the singular value decomposition of G as G = UΣV′,
where U,V ∈ Rn×n are two orthogonal matrices, and
Σ = diag(σi) ∈ Rn×n is a diagonal matrix containing
all the singular values. The singular value thresholding
operator on G can be represented as UD(Σ)V′, where
D(Σ) = diag((σi − λ1

2λ2
)+), and ( · )+ is a thresholding

operator by assigning the negative elements to be zeros.

3.4.3 Algorithm:
We summarize the optimization procedure in Algorithm 1
and name our method as Low-rank Exemplar SVMs (LRE-
SVMs). Specifically, we first initialize the weight matrix W
as W0, where W0 is obtained by solving the traditional
exemplar SVMs formulation in (2). Then we calculate the
prediction matrix G(W) by applying the learnt classifiers

Algorithm 1 Optimization Algorithm for Low-rank Exem-
plar SVMs (LRE-SVMs)
Input: Training data Xs, and the parameters C1, C2, λ1, λ2.

1: Initialize W ← W0, where W0 is obtained by solving
(2).

2: repeat
3: Calculate the prediction matrix G(W) based on the

current W.
4: Solve for F by optimizing the problem in (8) with the

SVT method.
5: Update W by solving the problem in (7) with the

gradient descent method.
6: until The objective converges or the maximum number

of iterations is reached.
Output: The weight matrix W.

on all positive samples. Next, we obtain the matrix F by
solving the problem in (8) with the SVT method. After that,
we use the gradient descent method to update the weight
matrix W. The above steps are repeated until the algorithm
converges.

4 LOW-RANK EXEMPLAR LEAST SQUARE SVMS

While being able to exploit subdomains, LRE-SVMs is com-
putationally inefficient. This is inherited from the exemplar
SVMs method, in which an exemplar SVM is required to
be trained for each positive training sample. In this section,
we develop an efficient algorithm with a new LRE-SVMs
formulation based on the least square SVMs, which is
referred to as Low-Rank Exemplar Least Square SVMs or
LRE-LSSVMs in short.

4.1 The Formulation

In the same spirit of exemplar SVMs, we learn an SVM
classifier with the least square SVM method by using each
positive sample and all the negative samples. In particular,
let us denote the decision function as g(x) = w′ϕ(x). Based
on the least square SVM method, we formulate the exemplar
least square SVMs problem as follows,

min
W,ηi,ξi,j

1

2
∥W∥2 + 1

2
C1

n∑
i=1

η2i +
1

2
C2

n∑
i=1

m∑
j=1

ξ2i,j (9)

s.t. w′
iϕ(x

+
i ) + ηi = 1

w′
iϕ(x

−
j ) + ξi,j = −1,

where W = [w1, . . . ,wn] ∈ Rd×n, and wi ∈ Rd is the
weight vector for the decision function of the i-th exemplar
least square SVM.

Let us denote the objective as J2(W) = 1
2∥W∥

2 +
1
2C1

∑n
i=1 η

2
i + 1

2C2

∑n
i=1

∑m
j=1 ξ

2
i,j . By substituting it into

the objective function of (6), we arrive at our new LRE-
LSSVMs formulation based on the exemplar least square
SVMs as follows,

min
W,F

J2(W) + λ1∥F∥∗ + λ2∥F−G(W)∥2F , (10)

where G(W) consists of the decision values of the exemplar
classifiers on all positive training samples, i.e., G(W) =
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[gij ] ∈ Rn×n with gij = w′
jϕ(x

+
i ). Similarly, we also opti-

mize the new problem by alternatingly update two matrices
F and W. When updating F, the algorithm is the same
as that in Section 3.4.2 based on the new definition of the
matrix G, so we omit the details here.

4.2 Fast Solution for Exemplar LSSVM
Now we discuss how to update W, which is also the most
computationally expensive part for training LRE-SVMs.
When F is fixed, the subproblem for updating W can be
written as

min
W

J(W) + λ2∥G(W)− F∥2F , (11)

which can be further decomposed into n independent sub-
problems, with each subproblem for one exemplar SVM.
Specifically, the k-th subproblem can be written as

min
wk,ηk,ξk,j

1

2
∥wk∥2+

1

2
C1η

2
k+

1

2
C2

m∑
j=1

ξ2k,j+
1

2
λ2

n∑
i=1

ζ2i (12)

s.t. w′
kϕ(x

+
k ) + ηk = 1 (13)

w′
kϕ(x

−
j ) + ξk,j = −1, (14)

w′
kϕ(x

+
i ) + ζi = fi,k, (15)

where fi,k is the (i, k)-th entry of F. Moreover, the first
constraint is on the exemplar sample x+

k (i.e., the k-th
positive training sample), the second constraint is on each
negative training sample x−

j , and the last constraint is on
the i-th positive training sample x+

i .
Let us introduce the dual variable vector α =

[α+, α−
1 , . . . , α

−
m, αf

1 , . . . , α
f
n]

′ ∈ Rn+m+1, where each of α+,
α−
j ’s and αf

i ’s are the dual variables for those three types of
constraints in (13), (14) and (15), respectively. We also use
a vector ỹ = [+1,−1, . . . ,−1, f1,k, . . . , fn,k]′ ∈ Rn+m+1

to denote the values on the right hand side of the above
constraints. Then, the dual problem of (12) can be written
as,

(K̃+ D̃)α = ỹ (16)

where the matrix K̃ ∈ R(n+m+1)×(n+m+1) is an
extended kernel matrix. Specifically, the elements in
the first row of K̃ are the inner products between
the exemplar training sample and all samples, i.e.,
[ϕ(x+

k )
′ϕ(x+

k ), ϕ(x
+
k )

′ϕ(x−
1 ), . . . , ϕ(x

+
k )

′ϕ(x−
m), ϕ(x+

k )
′ϕ(x+

1 ),
. . . , ϕ(x+

k )
′ϕ(x+

n )]. Similarly, the elements in the subsequent
m rows are similarly defined as the inner products between
all the negative samples and all samples, and the elements
in remaining n rows are the inner products between all
the positive training samples and all samples. The matrix
D̃ is a diagonal matrix, with the first element as 1

C1
,

the following m elements as 1
C2

, and the remaining n

elements ans 1
λ2

. The solution can be obtained in close
form as α = (K̃ + D̃)−1ỹ. For the linear kernel case, the
weight vector in the decision function can be recovered as
wk = X̃α, where X̃ = [xk,x

−
1 , . . . ,x

−
m,x+

1 , . . . ,x
+
n ].

Although there is a closed form solution, it is still ex-
pensive to iteratively solve w for each exemplar SVM. The
main cost is from the matrix inverse operation (K̃ + D̃)−1,
which is O((n+m+ 1)3) in time complexity. Let us define
M̃ = K̃ + D̃. For different exemplar samples, the resultant

Algorithm 2 Optimization Algorithm for Low-rank Least
Square Exemplar SVMs (LRE-LSSVMs)
Input: Training data Xs, and the parameters C1, C2, λ1, λ2.

1: Initialize W ← W0, where W0 is obtained by solving
(9), and calculate the matrix M−1.

2: repeat
3: Calculate the prediction matrix G(W) based on the

current W.
4: Solve for F by optimizing the problem in (8) with the

SVT method.
5: Update W by iteratively solving n subproblems in

(12) based on the precomputed M−1.
6: until The objective converges or the maximum number

of iterations is reached.
Output: The weight matrix W.

matrices M̃’s are only different in the elements from the
first row and the first column, which makes it possible to
efficiently calculate the inverse of those matrices M̃’s. In
particular, each matrix M̃ can be decomposed as

M̃ =

[
m11 m′

1

m1 M

]
(17)

where m11 is the (1, 1)-th element of M̃, m1 ∈ Rn+m is
the vector consists of the remaining elements in the first
column of M̃, and M ∈ R(n+m)×(n+m) is a submatrix of
M̃ by eliminating the elements in the first row and the first
column. Using the block matrix inverse lemma, we arrive at

M̃−1 =

[
µ −µ(M−1m1)

′

−µM−1m1 M−1 + µM−1m1m
′
1M

−1

]
(18)

where µ = 1
m11−m′

1M
−1m1

. After calculating M−1, the time

complexity of calculating M̃−1 for each exemplar SVM is
reduce to O((n+m)2) only.

We summarize the optimization algorithm for LRE-
LSSVMs in Algorithm 2. It is similar to Algorithm 1, except
that we optimize a set of exemplar least square SVMs with
the aforementioned fast algorithm at step 5.

5 ENSEMBLE EXEMPLAR CLASSIFIERS

After training the low-rank exemplar SVMs, we obtain n ex-
emplar classifiers. To predict the test data, we discuss how to
effectively use those learnt classifiers in three situations. The
first one is the domain generalization scenario, where the
target domain samples are not available during the training
process. The second one is the domain adaptation scenario
with fixed target domain, where we have unlabeled data in
the target domain during the training process. And the third
one is the domain adaptation scenario with evolving target
domain, where the target test sample comes one by one, and
is sampled from an unknown and gradually changing data
distribution.

5.1 Domain Generalization

In the domain generalization scenario, we have no prior
information about the target domain. A simple way is to
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equally fuse those n exemplar classifiers. Given any test
sample x, the prediction p(x|W) can be calculated as,

p(x|W) =
1

n

n∑
i=1

p(x|wi), (19)

where p(x|wi) is the prediction from the i-th exemplar
classifier. It can be the likelihood value (resp., the decision
value) when using the logistic regression method (resp.,
the least square SVM method) for learning the exemplar
classifier.

Recalling the training samples may come from several
latent domains, a more practical way is to only use the
exemplar classifiers from the latent domain that the test
data likely belongs to. As aforementioned, each exemplar
classifier encodes certain local information of the exemplar
positive training sample. As a result, an exemplar classifier
tends to output relatively higher prediction scores for the
positive samples from the same latent domain, and rela-
tively lower prediction scores for the positive samples from
different latent domains. On the other hand, all exemplar
classifiers are expected to output low prediction scores for
the negative samples.

Therefore, given the test sample x during the test
process, it is beneficial to fuse only the exemplar clas-
sifiers that output higher predictions, such that we out-
put a higher prediction score if x is positive, and a low
prediction score if x is negative. Let us define T (x) =
{ i | p(x|wi) is one of the top K prediction scores for x} as
the set of indices of those selected exemplar classifiers, then
the prediction on this test sample can be obtained as,

p(x|W) =
1

K

∑
i:i∈T (x)

p(x|wi), (20)

where K is the predefined number of exemplar classifiers
that output high prediction scores for the test sample x.

5.2 Domain Adaptation with Fixed Target Domain
When we have unlabeled data in the target domain during
the training process, we can further assign different weights
to the learnt exemplar classifiers and better fuse the exem-
plar classifiers for predicting the test data from the target
domain. Intuitively, when the training data of one exemplar
classifier is closer to the target domain, we should assign a
higher weight to this classifier and vice versa.

Let us denote the target domain samples as {x1, . . . ,xu},
where u is the number of samples in the target domain.
Based on the Maximum Mean Discrepancy (MMD) crite-
rion [38], we define the distance between the target domain
and the training samples for learning each exemplar classi-
fier as follows,

di = ∥
1

n+m

nϕ(x+
i ) +

m∑
j=1

ϕ(x−
j )

− 1

u

u∑
j=1

ϕ(xj)∥2, (21)

where ϕ(·) is a nonlinear feature mapping function induced
by the Gaussian kernel. We assign a higher weight n to the
positive sample x+

i when calculating the mean of source
domain samples, since we only use one positive sample
for training the exemplar classifier at each time. In other
words, we duplicate the positive sample x+

i for n times and

then combine the duplicated positive samples with all the
negative samples to calculate the distance with the target
domain.

With the above distance, we then obtain the weight for
each exemplar classifier by using the RBF function as vi =
exp(−di/σ), where σ is the bandwidth parameter, and is set
to be the median value of all distances. Then, the prediction
on a test sample x can be obtained as,

p(x|W) =
∑

i:i∈T (x)

ṽip(x|wi), (22)

where T (x) is defined as in Section 5.1, and ṽi =
vi/

∑
i:i∈T (x) vi.

One potential drawback with the above ensemble
method is that we need to perform the predictions for n
times, and then fuse the top K prediction scores. Inspired by
Domain Adaptation Machine [19], we also propose to learn
a single target classifier on the target domain by leveraging
the predictions from the exemplar classifiers. Specifically,
let us denote the target classifier as f(x) = w̃′ϕ(x) + b. We
formulate our learning problem as follows,

min
w̃,b,ξi,ξ∗i ,f

1

2
∥w̃∥2 + C

u∑
i=1

(ξi + ξ∗i ) +
λ

2
Ω(f), (23)

s.t. w̃′ϕ(xi) + b− fi ≤ ϵ+ ξi, ξi ≥ 0, (24)
fi − w̃′ϕ(xi)− b ≤ ϵ+ ξ∗i , ξ∗i ≥ 0, (25)

where f = [f1, . . . , fu]
′ is an intermediate variable, λ and

C are the tradeoff parameters, ξi and ξ∗i are the slack
variables in the ϵ-insensitive loss similarly as in SVR, and
ϵ is a predifined small positive value in the ϵ-insensitive
loss. The regularizer Ω(f) is a smoothness function defined
as follows,

Ω(f) =
u∑

j=1

∑
i:i∈T (xj)

ṽi (fj − p(xj |wi))
2
, (26)

where we enforce each intermediate variable fj to be similar
to the prediction scores from the selected exemplar classi-
fiers in T (xj) for the target sample xj . In the above problem,
we use the ϵ-insensitive loss to enforce the prediction score
from target classifier f(xj) = w̃′ϕ(xj) + b to be close to
the intermediate variable fj . At the same time, we also
use a smoothness regularizer to enforce the intermediate
variable fj to be close to the prediction scores of the se-
lected exemplar classifiers in T (xj) on the target sample
xj . Intuitively, when ṽi is large, we enforce the intermediate
variable fj to be closer to p(xj |wi), and vice versa. Recall
the weight ṽi models the importance of the i-th exemplar
classifier for predicting the target sample, so we expect the
learnt classifier f(x) performs well for predicting the target
domain samples.

By introducing the dual variables α = [α1, . . . , αu]
′ and

α∗ = [α∗
1, . . . , α

∗
u]

′ for the constraints in (24) and (25), we
arrive at its dual form as follows,

min
α,α∗

1

2
(α−α∗)K̃(α−α∗) + p′(α−α∗)

+ϵ1′
u(α+α∗), (27)

s.t. 1′α = 1′α∗,0 ≤ α,α∗ ≤ C1, (28)
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where K̃ = K+ 1
λI ∈ Ru×u with K being the kernel matrix

of the target domain samples, p = [p(x1|W), . . . , p(xu|W)]′

with each entry p(xj |W) defined in (22) being the “virtual
label” for the target sample xj as in DAM [19]. In DAM [19],
the virtual labels of all the target samples are obtained by
fusing the same set of source classifiers. In contrast, we use
the predictions from different selected exemplar classifiers
to obtain the virtual labels of different target samples. There-
fore, DAM can be treated as a special case of our work by
using the same classifiers for all test samples.

5.3 Domain Adaptation with Evolving Target Domain

The domain adaptation with evolving target domain is a
learning problem between domain generalization and do-
main adaptation. On one hand, the unlabeled target data is
also unseen during the training process. On the other hand,
we have prior information that the unlabeled target samples
arrive sequentially, which are assumed to be sampled from
an unknown distribution that changes gradually in the
sequential order.

As discussed in [12], the traditional domain adaptation
methods are not applicable to this problem, because we usu-
ally cannot access a set of unlabeled target samples, which
are required by those methods for reducing the domain
distribution mismatch. Moreover, even if we use the existing
unlabeled target domain samples as input, the traditional
domain adaptation methods may not work well, because
the underlying data distribution is dynamically changing.

Since the target domain samples are not available during
the training process, a possible way is to treat it as a
domain generalization problem. More interestingly, recall
our LRE-SVMs and LRE-LSSVMs encode the local domain
properties into those exemplar classifiers. For any given test
target sample, by using the ensemble method in (20), we
can dynamically select multiple exemplar classifiers with
appropriate domain properties that well match the target
sample, so our LRE-SVMs and LRE-LSSVMs approaches are
also expected to perform well on the domain adaptation
task with evolving target domain by simply treating it as
an domain generalization problem, which is verified in our
experiments (see Section 6.3).

However, if we simply apply LRE-SVMs or LRE-
LSSVMs, we would have ignored the prior information that
the underlying distribution of target test samples is gradu-
ally changing. Therefore, to further improve the stability of
domain adaptation, we propose to learn a single classifier to
predict the test sample in the target domain, and gradually
update the classifier when the test samples in the target
domain come sequentially. In particular, we first consider
the traditional domain adaptation problem where we are
given a batch of unlabeled target samples, and then adapt it
to the scenario when the unlabeled target samples come one
by one.

Given a set of unlabeled target samples {x1, . . . ,xu},
we employ the similar formulation in (23) to learn a unified
classifier f(x) = w̃′x for predicting target domain samples,
except replacing the ϵ-insensitive loss with the least square
loss. In particular, we arrive at the following objective func-

Algorithm 3 Low-rank Exemplar SVMs (LRE-SVMs) for
Domain Adaptation with Evolving Target Domain
Input: Sequential target data {x1, . . .}, weight matrix of

LRE-SVMs W, and the tradeoff parameter C.
1: Set t = 1.
2: repeat
3: if t = 1 then
4: Calculate H−1 = (xtx

′
t +

1
C I)−1.

5: Calculate w̃ = H−1xtpt.
6: else
7: Calculate w̃← w̃ + H−1xt(pt−w̃′xt)

1+x′
tH

−1xt

8: Calculate H−1 ← H−1 − H−1xtx
′
tH

−1

1+x′
tH

−1xt
.

9: end if
10: Predict the test sample f(xt) = w̃′xt.
11: Set t← t+ 1.
12: until The end of the input sequence.
Output: Decision values {f(x1), . . .}.

tion,

min
w̃

1

2
∥w̃∥2 + C

u∑
i=1

(w̃′xi − pi)
2, (29)

which has a closed form solution w̃ = (XX′ + 1
C I)−1Xp,

where X = [x1, . . . ,xu] ∈ Rd×u is the data matrix of the
unlabled target samples, I ∈ Rd×d is an identity matrix,
and p = [p1, . . . , pu]

′ with each pi = p(xi|W) being the
prediction from LRE-SVMs as defined in (22).

When the target domain samples come sequentially, the
problem in (29) can also be solved in an online fashion. In
particular, let us denote Xt = [x1, . . . ,xt] ∈ Rd×t as the
data matrix consisting of the first t samples, and denote wt

as the the weight vector of the prediction function at the t-
th time. We also define Ht = XtXt

′ + 1
C I. According to the

Woodbury formula, the inverse of Ht+1 can be written as

Ht+1
−1 = Ht

−1 −
H−1

t xt+1x
′
t+1H

−1
t

1 + x′
t+1Ht

−1xt+1

. (30)

Therefore, the weight vector w̃t+1 at time (t+ 1), can be
updated as,

w̃t+1 = (Xt+1X
′
t+1 +

1

C
I)−1Xt+1pt+1

= w̃t +
H−1

t xt+1(pt+1 − w̃′
txt+1)

1 + x′
t+1H

−1
t xt+1

. (31)

We observe that the calculation of w̃t+1 and Ht+1 only relies
on the (t+ 1)-th sample xt+1 and the matrix Ht. Therefore,
we can gradually update Ht and w̃t, and predict the target
sample sequentially without storing those target samples.

We summarize the algorithm for domain adaptation
with evolving target domain in Algorithm 3. Specifically,
for the first target sample, we directly learn the least square
SVM classifier using the closed form solution for (29). For
the subsequent target samples, we update w̃ and H−1 using
the equations in (30) and (31). The target sample is predicted
by using the latest classifier. The process is repeated until no
more target samples arrive.
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6 EXPERIMENTS

In this section, we evaluate our two low-rank exemplar
SVMs (LRE-SVMs) approaches for domain generalization,
and domain adaptation with fixed and evolving target do-
mains, respectively.

6.1 Domain Generalization
In domain generalization scenario, only the source domain
samples are available in the training process. The task is
to train classifiers that generalize well to the unseen target
domain.

6.1.1 Experimental Setup
Following the work in [10], we use the Office-Caltech
dataset [3], [39] for visual object recognition and the IXMAS
dataset [40] for multi-view action recognition.

Office-Caltech [3], [39] dataset contains the images from
four domains, Amazon (A), Caltech (C), DSLR (D), and We-
bcam (W), in which the images are from Amazon, Caltech-
256, and two more datasets captured with digital SLR cam-
era and webcam, respectively. The ten common categories
among the 4 domains are utilized in our evaluation. Fol-
lowing the recent works on unsupervised domain adapta-
tion [16], [18], [41], we extract the AlexNet fc7 feature [42]
for the images in the Office-Caltech dataset.

IXMAS dataset [40] contains the videos from eleven
actions captured by five cameras (Cam 0, Cam 1, . . . , Cam
4) from different viewpoints. Each of the eleven actions
is performed three times by twelve actors. To exclude the
irregularly performed actions, we keep the first five actions
(check watch, cross arms, scratch head, sit down, get up)
performed by six actors (Alba, Andreas, Daniel, Hedlena,
Julien, Nicolas), as suggested in [10]. We extract the dense
trajectories features [43] from the videos, and use K-means
clustering to build a codebook with 1, 000 clusters for each
of the five descriptors (i.e., trajectory, HOG, HOF, MBHx,
MBHy). The bag-of-words features are then concatenated to
a 5, 000 dimensional feature for each video sequence.

Following [10], we treat the images from different
sources in the Office-Caltech dataset as different domains,
and treat the videos from different viewpoints in the IXMAS
dataset as different domains, respectively. In our experi-
ments, we mix several domains as the source domain for
training the classifiers and use the remaining domains as
the target domain for testing. For the domain generalization
task, the samples from the target domain are not available
during the training process.

We compare our two low-rank exemplar SVMs ap-
proaches with the recent two latent domain discovering
methods [9], [10]. We additionally report the results from
the discriminative sub-categorization(Sub-C) method [44],
as it can also be applied to our application. For all methods,
we mix multiple domains as the source domain for training
the classifiers following the experimental setup in [9], [10].

For those two latent domain discovering methods [9],
[10], after partitioning the source domain data into different
domains using their methods, we train an SVM classifier on
each domain, and then fuse those classifiers for predicting
the test samples. We employ two strategies to fuse the learnt
classifiers as suggested in [10], which are referred to as the

TABLE 1
Recognition accuracies (%) of different methods for domain

generalization. Our LRE-SVMs and LRE-LSSVMs approaches do not
require domain labels or target domain data during the training

process. The results of our LRE-SVMs and LRE-LSSVMs approaches
are denoted in boldface.

Source A,C D,W C,D,W Cam 0,1 Cam 2,3,4 Cam 0,1,2,3
Target D,W A,C A Cam 2,3,4 Cam 0,1 Cam 4
SVM 84.96 84.09 92.28 71.70 63.83 56.61

Sub-C [44] 85.28 84.33 92.17 78.11 76.90 64.04
[9](Ensemble) 83.41 83.37 89.67 71.55 51.02 49.70

[9](Match) 81.86 79.29 88.10 63.81 60.04 48.91
[10](Ensemble) 85.07 84.39 91.82 75.04 68.98 57.64

[10](Match) 84.71 84.22 92.14 71.59 60.73 55.37
E-SVMs 85.24 84.64 92.47 76.86 68.04 72.98

LRE-SVMs 85.29 85.01 92.66 79.96 80.15 74.97
E-LSSVMs 85.85 84.02 92.46 80.68 70.99 71.58

LRE-LSSVMs 87.56 84.72 92.99 81.05 81.81 72.75

ensemble strategy and the match strategy, respectively. The
ensemble strategy is to re-weight the decision values from
different SVM classifiers by using the domain probabilities
learnt with the method in [9]. In the match strategy, we
first select the most relevant domain based on the MMD
criterion, and then use the SVM classifier from this domain
to predict the test samples.

Moreover, we also report the results from the baseline
SVM method, which is trained by using all training samples
in the source domain. The results from exemplar SVMs (E-
SVMs) (resp., exemplar least square SVMs (E-LSSVMs)) are
also reported, which is a special case of our proposed LRE-
SVMs (resp., LRE-LSSVMs) without considering the nuclear-
norm based regularizer, and we also use the method in
(20) to fuse the selected top K exemplar classifiers for the
prediction. We fix K = 5 for all our experiments. For other
learning parameters, we fix the regularizer parameters as
λ1 = λ2 = 10, and set the loss weight parameter C1 = 10
and C2 = 1 on the Office-Caltech dataset, and C1 = 0.1
and C2 = 0.001 on the IXMAS dataset. For the baseline
methods, we choose the optimal parameters according to
their recognition accuracies on the test dataset.

6.1.2 Experimental Results

The experimental results on two datasets are summarized in
Table 1. For the two latent domain discovering methods [9],
[10], we observe that the recently published method by
Gong et al. [10] achieves quite competitive results when
using the ensemble strategy (i.e., [10](Ensemble) in Table 1).
It achieves better results in five cases when compared with
SVM, which demonstrates it is beneficial to discover latent
domains in the source domain. However, the method in [9]
is not as effective as [10]. We also observe the match strategy
generally achieves worse results than the ensemble strategy
for those latent domain discovering methods, although the
target domain information is used to select the most relevant
discovered source domain in the testing process. Moreover,
the Sub-C method also achieves better results on five cases
when compared with SVM, because it also exploits the latent
structure within each category, which could be helpful for
improving the generalization ability similarly as the latent
domain discovering methods.
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(a) LRE-LSSVMs (b) E-LSSVMs

Fig. 2. Visualization of the prediction matrix G(W).

Compared with the baselines, our proposed LRE-SVMs
and LRE-LSSVMs approaches achieve the best results in all
six cases on two datasets, which clearly demonstrates the
effectiveness of our method for domain generalization by
exploiting the low-rank structure in the source domain. We
also observe that our special cases (i.e., exemplar SVMs (E-
SVMs) and exemplar least square SVMs (E-LSSVMs)) also
achieve comparable or better results than SVM. Note we
also apply the prediction method using (20) for E-SVMs
and E-LSSVMs. By selecting the most relevant classifiers, we
combine a subset of exemplar classifiers for predicting each
test sample, leading to good results. By further exploiting
the low-rank structure in the source domain, we implicitly
employ the information from latent domains in our LRE-
SVMs and LRE-LSSVMs methods. In this way, the selected
top K exemplar classifiers are more likely from the same
latent domain that the test sample belongs to. Thus, our
LRE-SVMs (resp., LRE-LSSVMs) method outperforms its
special case E-SVMs (resp., E-LSSVMs) in all six cases for
domain generalization.

6.1.3 Effect of the Low-Rank Regularizer
In this section, we provide some qualitative results to better
understand the effect of the low-rank based regularizer in
our our proposed LRE-LSSVMs and LRE-SVMs methods.
Intuitively, the low-rank regularizer aims to enforce the
predictions on positive training samples from the exem-
plar classifiers to be low-rank. In Figure 2, we show the
prediction matrix G(W) for our LRE-LSSVMs method and
its corresponding special case the E-LSSVMs method in the
setting of “C, D, W → A” on the Office-Caltech dataset for
the category “laptop computer”. As shown in Figure 2(b),
the prediction matrix G of E-LSSVMs roughly exhibits the
block diagonal property, which verifies our motivation that
the predictions using the exemplar classifiers from the same
latent domains tend to be similar. In Figure 2(a), we also
observe that the low-rank property of the matrix G becomes
more obvious after using the low-rank regularizer in our
LRE-LSSVMs method.

6.1.4 Parameter Sensitivity Analysis
We show the performance changes of our LRE-LSSVMs
method with respect to different parameters in Figure 3.
In particular, we take the Office-Caltech dataset with the
case D,W → A,C as a study case, and run our method
by varying each of the four parameters (i.e., C1, C2, λ1, and
λ2) in a certain range when fixing the others. In particular,
the parameters can be divided into two groups, the loss
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Fig. 3. The performance of our LRE-LSSVMs method when varying
different parameters: (a) varying parameters C̃1 and λ1, and (b) varying
parameters C2 and λ̃2.

tradeoff parameters C1 and C2, and the weights for low-
rank based regularizer λ1 and λ2. We set C1 = C̃1 ∗ C2,
and λ2 = λ̃2λ1, where C̃1 is used to balance different
loss terms for the exemplar positive sample and negative
samples, and λ̃2 indicates how much we relax the low-rank
based regularizer. We vary those parameters by setting C2 ∈
[10−2, 10−1, 100, 101, 102], C̃1 ∈ [10−1, 100, 101, 102, 103],
λ1 ∈ [10−2, 10−1, 100, 101, 102], λ̃2 ∈ [2−1, 20, 21, 22, 23].

It can be observed that our method is relatively stable
when varying each parameter in a certain range. While
we fix the parameter as described above, further tuning
the parameter will give better performance. For example,
the performance goes up when we set a smaller C̃1 or C2.
Generally, it is still an open problem to automatically select
the optimal parameters for domain adaptation and domain
generalization methods, because of the lack of validation
data in the target domain. How to use the cross-validation
strategy to choose the optimal parameters for our proposed
methods without having any labeled target domain data
will be an interesting research issue in the future.

6.1.5 Comparison of Two LRE-SVMs Approaches

Compared with the LRE-SVMs method developed in our
preliminary conference work [11], our newly developed
LRE-LSSVMs method uses the least square loss to replace
the logistic regression loss for learning each exemplar clas-
sifier. We have also developed a fast algorithm for solving
a batch of exemplar least square SVMs. In terms of recog-
nition accuracies, we observe from Table 1 that our new
LRE-LSSVMs method generally achieve comparable results
with the original LRE-SVMS method, where LRE-LSSVMs
is better than LRE-SVMS in four cases, and worse in two
cases only.

Besides the recognition accuracy comparison, the main
advantage of the newly proposed LRE-LSSVMs method
over the LRE-SVMS method is the time cost for training ex-
emplar SVMs. We take the first case of the IXMAS dataset as
an example to compare the training time of two approaches.
Both methods are implemented with MATLAB, and we
conduct the experiments on a workstation with Intel(R) Core
i7-3770K CPU@3.50GHz and 16GB RAM. For each method,
the total training time over all five actions is recorded. The
experiments are repeated for 10 times for each method, and
the average training time is reported in Table 2. It can be
observed that the newly proposed LRE-LSSVMs approach
is much faster (more than 80 times) than the original LRE-
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TABLE 2
Average training time and standard deviation (in seconds) of

LRE-SVMs and LRE-LSSVMs over 10 rounds of experiments on the
IXMAS dataset (Cam 0,1 → Cam 2,3,4).

LRE-SVMS LRE-LSSVMs
Time 236.34 ±1.93 2.70 ±0.03

SVM approach on the IXMAS dataset for the case (Cam 0,1
→Cam 2,3,4). This shows the efficiency of our fast algorithm
for learning the exemplar least square SVMs when updating
W at the step 5 of Algorithm 2. Therefore, we conduct
the following experiments by using LRE-LSSVMs due to its
efficiency and effectiveness.

6.2 Domain Adaptation with Fixed Target Domain
In this section, we further evaluate our proposed method for
the domain adaptation task, in which the unlabeled samples
from the target domain are available in the training process.
For domain adaptation, we adopt the approach proposed in
Section 5.2 to fuse the exemplar classifiers learnt by using
our LRE-LSSVMs method, and we refer to our approach
for domain adaptation as LRE-LSSVMs-DA. We compare
our method with other domain adaptation methods on two
tasks, action recognition and object recognition. Because the
deep transfer learning methods are assumed to take images
as the input, they were mainly applied to the image based
object recognition task [16], [18]. We divide our experi-
ments into two parts, comparisons with traditional domain
adaptation methods for the video based action recognition
on the IXMAS dataset, and comparisons with the CNN
based domain adaptation methods for image based object
recognition the Office-Caltech dataset [3]. The experiments
for image recognition on the benchmark Office dataset can
also be found in the Supplementary.

6.2.1 Video Based Action Recognition
We first investigate the state-of-the-art unsupervised do-
main adaptation methods, including Kernel Mean Match-
ing (KMM) [21], Sampling Geodesic Flow (SGF) [2],
Geodesic Flow Kernel (GFK) [3], Selective Transfer Machine
(STM) [45], Domain Invariant Projection (DIP) [13], and
Subspace Alignment (SA) [14]. For all those methods, we
combine the videos captured from multiple cameras to form
one combined source domain, and use the remaining sam-
ples as the target domain. Then we apply all the methods
for domain adaptation. For the feature-based approaches
(i.e., SGF, GFK, DIP and SA), we train an SVM classifier
after obtaining the domain invariant features/kernels with
those methods. We also select the best parameters for those
baseline methods according to the test results.

The results of those baseline methods are reported in
Table 3. We also include the baseline SVM method trained
by using all the source domain samples as training data for
the comparison. Cross-view action recognition is a challeng-
ing task. As a result, most unsupervised domain adaptation
methods cannot achieve promising results on this dataset,
and they are worse than SVM in many cases. The recently
proposed methods SA [14] and DIP [13] achieve relatively
better results, which are better than SVM in two out of three
cases.

TABLE 3
Recognition accuracies (%) of different methods for domain adaptation.

The best results are denoted in boldface.

Source Cam 0,1 Cam 2,3,4 Cam 0,1,2,3
Target Cam 2,3,4 Cam 0,1 Cam 4
SVM 71.70 63.83 56.61
KMM 73.92 42.22 52.57
SGF 60.37 69.04 28.66
GFK 64.87 55.53 42.16
STM 68.69 70.53 51.05
DIP 65.20 70.03 62.92
SA 73.35 77.92 49.59

GFK
(latent)

[9] (Match) 61.33 58.77 46.62
[9] (Ensemble) 65.32 55.01 42.09
[10] (Match) 65.32 64.43 47.22
[10] (Ensemble) 69.12 68.87 51.30

SA
(latent)

[9] (Match) 58.49 56.27 55.87
[9] (Ensemble) 63.01 62.05 62.69
[10] (Match) 66.27 67.00 63.01
[10] (Ensemble) 71.04 76.64 72.26

DAM
(latent)

[9] 77.92 76.99 53.76
[10] 77.32 73.94 62.47

LRE-LSSVMs-DA 81.79 81.84 73.04

We further investigate the latent domain discovering
methods [9], [10]. We use their methods to divide the source
domain into several latent domains. Then, we follow [10]
to perform the GFK [3] method between each discovered
latent domain and the target domain to learn a new kernel
for reducing the domain distribution mismatch, and train
SVM classifiers using the learnt kernels. Then we also use
the two strategies (i.e., ensemble and match) to fuse the SVM
classifiers learnt from different latent domains. Moreover,
as the SA method achieves better results than GFK on the
combined source domain, we further use the SA method
to replace the GFK method for reducing the domain dis-
tribution mismatch between each latent domain and the
target domain. The other steps are the same as those when
using the GFK method. We report the results using latent
domain discovering methods [9], [10] combined with GFK
and SA in Table 3, which are denoted as GFK(latent) and
SA(latent), respectively. As our method is also related to the
DAM method [19], we also report the results of the DAM
method by treating the discovered latent domains with [9],
[10] as multiple source domains, which is referred to as
DAM(latent).

From Table 3, we observe GFK(latent) using the latent
domains discovered by [10] is generally better when com-
pared with GFK(latent) using the latent domains discovered
by [9]. By using the latent domains discovered by [10],
the results of GFK(latent) using both match and ensemble
strategies are better than those of GFK on the combined
source domain. However, most results from GFK(latent) are
still worse than SVM, possibly because the GFK method
cannot effectively handle the domain distribution mismatch
between each discovered latent domain and the target do-
main. When using the SA method to replace GFK, we
observe the results from SA(latent) in all three cases are
improved when compared with their corresponding results
from GFK(latent) by using the latent domains discovered by
[10]. Moreover, we also observe DAM(latent) outperforms
SVM in all cases or most cases when using the latent source
domains discovered by [10] or [9].
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TABLE 4
Recognition accuracies (%) of different methods for domain adaptation

on the Office-Caltech dataset. The best results are denoted in bold.

Source A,C D,W C,D,W
Target D,W A,C A
SVM 85.40 83.76 92.28

DAN [18] 92.92 82.08 92.48
ReverseGrad [16] 92.25 88.90 93.11
LRE-LSSVMs-DA 89.55 88.15 93.27

LRE-LSSVMs(DAN) 94.54 83.24 93.07
LRE-LSSVMs(ReverseGrad) 92.55 89.32 93.57

Our method achieves the best results in all three cases,
which again demonstrates the effectiveness of our proposed
LRE-LSSVMs-DA for exploiting the low-rank structure in
the source domain. Moreover, our method LRE-LSSVMs-DA
outperforms LRE-LSSVMs on three cases (see Table 1). Note
LRE-LSSVMs does not use the target domain unlabeled
samples during the training process. The results further
demonstrate the effectiveness of our domain adaptation
approach LRE-LSSVMs-DA for coping with the domain
distribution mismatch in the domain adaptation task.

6.2.2 Image Based Object Recognition

We compare our LRE-LSSVMs-DA method with the recently
proposed deep transfer learning methods DAN [18], and Re-
verseGrad [16] for object recognition on the Office-Caltech
dataset. We strictly follow the experimental setup in [16],
[18]. We first fine-tune pretrained AlexNet model based on
the ImageNet dataset by using the labeled samples in the
source domain, and then use the fine-tuned CNN model
to extract the features from the images in both source and
target domains. For DAN and ReverseGrad, we use their
released source codes, and fine-tune the pretrained AlexNet
model by using the suggested parameters in [16], [18].

The results are shown in Table 4, in which the results of
the baseline SVM method are also included for comparison.
Comparing with the baseline SVM method in Table 1 that
directly uses AlexNet fc7 features, fine-tuning the networks
using the labeled data from the source domain does not
gain much improvements on this dataset. We also observe
that DAN and ReverseGrad generally achieve quite good
results when using multiple datasets as one source domain.
However, there is no consistent winner when comparing
these two methods and our method LRE-LSSVMs-DA. In
particular, our method achieves the best result on the last
case, while the DAN method and the ReverseGrad method
win on the first and second case, respectively.

Moreover, the deep transfer learning methods are pro-
posed to learn domain-invariant features, while our pro-
posed LRE-SVMs and LRE-LSSVMs methods aim to im-
prove the cross-domain generalization ability by learning
robust exemplar classifiers, namely, their methods focus
on feature learning, while our work focuses on classi-
fication. So our proposed LRE-LSSVMs method can be
used to further improve the recognition accuracies by
learning the exemplar classifiers with the features ex-
tracted by DAN and ReveseGrad, which are denoted
by LRE-LSSVMs(DAN) and LRELSSVMs(ReverseGrad), re-
spectively. From the last two rows of Table 4, it can

be observed that LRE-LSSVMs(DAN) consistently outper-
forms DAN, while LRELSSVMs(ReverseGrad) is consis-
tently better than ReveseGrad, which demonstrates that our
LRELSSVMs method is complementary to the two deep
transfer learning methods DAN and ReveseGrad by exploit-
ing the local statistics to further enhance the generalization
ability across domains.

6.3 Domain Adaptation with Evolving Target Domain
In the domain adaptation scenario with evolving target do-
main, unlabeled samples in the target domain are provided
sequentially. Each target sample is assumed to be sampled
from an unknown and gradually changing distribution. In
other words, unlabeled samples in the target domain are
unseen when learning the classifiers using labeled data in
the source domain, and the adaptation is performed in an
online fashion during the testing process.

6.3.1 Experimental Setup
Similarly as in [33], we conduct experiments on the CarEv-
olution dataset [46] 2, which consists of 1, 086 images of
different cars. Each car is annotated with one of three
manufactories (i.e., BMW, Mercedes or VW), as well as the
year in which the car model was introduced (from 1972 to
2013). The task is to predict the manufactory of the car in
each image.

As discussed in [32], the car style is gradually varying
during the past decades. Therefore, the car images in the
CarEvolution dataset can be assumed to be sampled from
an underlying distribution, which is gradually changed
chronologically. Different from the task in [33], we aim to
investigate the classification performance when the target
data is varying, so we split as many images as possible into
the test set. We conduct the experiments in two settings. In
the first setting, we use the images of cars after 1980 as the
target domain and the remaining images of cars before 1980
as the source domain (i.e., ≤ 1980 →> 1980), while in the
second setting we use the images of cars after 1990 as the
target domain and the remaining images of cars before 1990
as the source domain (i.e., ≤ 1990 →> 1990). The target
images are ordered chronologically, and are assumed to be
provided one by one.

We extract the CNN features using the output from the
“fc6” layer of the CAFFE reference model [47], which leads
to a 4, 096 dimension feature vector for each image. Each
feature vector is further normalized such that its ℓ2 norm
equals 1. When predicting the target samples, we employ
Algorithm 3 based on the pre-learnt LRE-LSSVMs classifiers
trained based the training samples from the source do-
main, and refer to our approach as LRE-LSSVMS-EDA. We
compare our work with the recently proposed Continuous
Manifold Adaptation (CMA) method [48] 3. Following [48],
we integrate the CMA approach with two subspace based
domain adaptation methods, the GFK method and the SA
method, and refer to them as CMA+GFK and CMA+SA,
respectively. The SVM method is used to train the classifiers
for predicting the target samples after applying CMA+GFK

2. http://homes.esat.kuleuven.be/∼krematas/VisDA/
CarEvolution.html

3. Codes are downloaded from http://cma.berkeleyvision.org/
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TABLE 5
Recognition accuracies (%) of different methods for domain adaptation

with evolving target domain, where the target domain distribution is
gradually changing. The best results are denoted in boldface.

Setting 1 Setting 2
Source ≤ 1980 ≤ 1990
Target > 1980 > 1990

SVM 39.66 46.08
CMA+GFK 42.95 47.93
CMA+SA 42.73 44.39

LRE-LSSVMs 43.61 50.53
LRE-LSSVMs-EDA 44.33 51.01

or CMA+SA. We also include the SVM method without do-
main adaptation as a baseline for comparison. For the base-
line methods, the optimal parameters are chosen according
to their best recognition accuracies on the test dataset.

6.3.2 Experimental Results
The recognition accuracies of all methods on the CarEv-
olution dataset are summarized in Table 5. Generally, the
task become more challenging, when we split more samples
into the test set. For example, the recognition accuracies
of all methods in the first setting (≤ 1980 →> 1980) are
lower than their corresponding results in the second setting
(≤ 1990→> 1990). The CMA+GFK method achieves better
results than the baseline SVM method in both settings
by considering the evolving distribution of target domain
samples, while the CMA+SA method does not perform well
in the second setting. Our LRE-LSSVMs method achieves
better results than two CMA methods, which demonstrates
excellent generalization ability of our approach by combin-
ing the exemplar classifiers for domain generalization. By
further considering the distribution changing on the target
domain, our LRE-LSSVMs-EDA method achieves the best
results in both settings, which clearly demonstrates the ef-
fectiveness of our LRE-LSSVMs-EDA approach for domain
adaptation with evolving target domain.

7 CONCLUSIONS

In this paper, we have proposed a new approach called
Low-rank Exemplar SVMs (LRE-SVMs) for domain gen-
eralization by exploiting the low-rank structure of posi-
tive training samples from multiple latent source domains.
Specifically, based on the recent work on exemplar SVMs,
we propose to exploit the low-rank structure in the source
domain by introducing a nuclear-norm based regularizer
on the prediction matrix consisting of the predictions of all
positive samples from all exemplar classifiers. We develop
a new LRE-SVMs approach based on the least square SVMs
(referred to as LRE-LSSVMs), which is much faster than
the original LRE-SVMs method. To additionally handle the
domain distribution mismatch between the training and
test data, we further develop an effective method to re-
weight the selected set of exemplar classifiers based on the
Maximum Mean Discrepancy (MMD) criterion, and extend
the Domain Adaptation Machine (DAM) method to learn a
unified target classifier. We also develop a new algorithm
for the domain adaptation problem with evolving target
domain, where the data distribution of target domain is

gradually changing. The comprehensive experiments have
demonstrated the effectiveness of our approach for do-
main generalization, and domain adaptation with fixed and
evolving target domains.
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