
3280 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 20, NO. 11, NOVEMBER 2011

Improving Web Image Search by
Bag-Based Reranking
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Abstract—Given a textual query in traditional text-based image
retrieval (TBIR), relevant images are to be reranked using visual
features after the initial text-based search. In this paper, we pro-
pose a new bag-based reranking framework for large-scale TBIR.
Specifically, we first cluster relevant images using both textual
and visual features. By treating each cluster as a “bag” and the
images in the bag as “instances,” we formulate this problem as
a multi-instance (MI) learning problem. MI learning methods
such as mi-SVM can be readily incorporated into our bag-based
reranking framework. Observing that at least a certain portion of
a positive bag is of positive instances while a negative bag might
also contain positive instances, we further use a more suitable
generalized MI (GMI) setting for this application. To address the
ambiguities on the instance labels in the positive and negative
bags under this GMI setting, we develop a new method referred
to as GMI-SVM to enhance retrieval performance by propagating
the labels from the bag level to the instance level. To acquire bag
annotations for (G)MI learning, we propose a bag ranking method
to rank all the bags according to the defined bag ranking score.
The top ranked bags are used as pseudopositive training bags,
while pseudonegative training bags can be obtained by randomly
sampling a few irrelevant images that are not associated with the
textual query. Comprehensive experiments on the challenging
real-world data set NUS-WIDE demonstrate our framework with
automatic bag annotation can achieve the best performances com-
pared with existing image reranking methods. Our experiments
also demonstrate that GMI-SVM can achieve better performances
when using the manually labeled training bags obtained from
relevance feedback.

Index Terms—Bag-based image reranking, generalized multi-in-
stance (GMI) learning, text-based image retrieval (TBIR).

I. INTRODUCTION

W ITH THE ever-growing number of images on the
Internet (such as in the online photo sharing Website

, the online photo forum , and so
on), retrieving relevant images from a large collection of data-
base images has become an important research topic. Over the
past decades, many image retrieval systems have been devel-
oped, such as text-based image retrieval (TBIR) [3], [12], [19],
[38], [42] and content-based image retrieval [23], [33], [39].
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Fig. 1. Web images with noisy tags.

As shown in Fig. 1, Web images (e.g., images downloaded
from ) are usually associated with rich semantic tex-
tual descriptions (also called surrounding texts or tags). By ex-
ploiting such rich semantic textual descriptions of Web images,
the TBIR has been widely used in popular image search engines
(e.g., , , and ). Specifically, a user is required
to input a keyword as a textual query to the retrieval system. Then,
the system returns the ranked relevant images whose surrounding
texts contain the query keyword, and the ranking score is ob-
tained according to some similarity measurements (such as co-
sine distance) between the query keyword and the textual fea-
tures of relevant images. However, the retrieval performance can
be very poor, particularly when the textual features of the Web
images are sparse and noisy in a high-dimensional space.

To solve this problem, many image reranking methods have
been developed [5], [12]–[14], [31], [32], [36], [42] to rerank the
initially retrieved images using visual features. Zhou and Dai
[42] proposed a method called Web search exploiting image con-
tents (WEBSEIC), which uses kernel density estimation (KDE)
based on visual features to rerank the retrieved relevant images.
After that, an image-based ranking of Web pages is generated,
and the final search result is obtained by combining with the
original text-based search result. Hsu et al. [12] presented a
reranking method via the information bottleneck principle based
on mutual information. In their work, they first clustered the
initially retrieved images together with some irrelevant images
by using a so-called sequential information bottleneck clustering
method [26]. Then, a cluster probability is obtained for cluster
ranking. Finally, KDE based on visual features is used to rerank
the relevant images within each cluster. Several graph-based
reranking methods [13], [14], [32], [36] have been also devel-
oped. The basic idea is to construct a graph representing the local
similarity of visual features of images for reranking. However,
the similarity of low-level visual features among the uncon-
strained Web images may not reflect the high-level semantic
concepts of Web images due to the semantic gap. Moreover,
this reranking paradigm does not consider label information and
can only achieve limited improvements. To address this issue,
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Fig. 2. Bag-based image reranking framework for large-scale TBIR.

relevance feedback (RF) methods [5], [31] have been proposed
to acquire the search intentions of the user for further improving
the retrieval performance. Aside from these, Zhang et al. [38]
investigated a so-called user term feedback method to refine
the retrieved images. However, they mentioned that the term
feedback was not effective in the TBIR. For more comprehensive
reviews of image retrieval, interested readers can refer to two
surveys in [6] and [27].

To improve the retrieval performance, in this paper, we in-
troduce a new framework, referred to as the bag-based image
reranking framework, for large-scale TBIR. We first partition
the relevant images into clusters by using visual and textual fea-
tures. Inspired by multi-instance (MI) learning methods [1], [7],
[20], [25], [40], we treat each cluster of images as a “bag” and
the images inside the cluster as “instances.” Then, existing MI
learning methods (e.g., mi-SVM [1]) can be readily adopted in
our framework.

In traditional MI learning methods, if a bag contains at least
one relevant instance, this bag is labeled as positive; if the in-
stances in a bag are all irrelevant, this bag is labeled as neg-
ative. In our image retrieval application, we observe that it is
very likely that multiple relevant images are clustered in a pos-
itive bag while a few relevant images may be clustered with ir-
relevant images in a negative bag. Different from traditional MI
learning, we propose a generalized MI (GMI) setting for this
application in which at least a certain portion of a positive bag
is of positive instances, while a negative bag might contain at
most a few positive instances. In this case, the traditional MI
methods may not be effective to address the ambiguities on the
instance labels in both positive and negative bags. Therefore, we
propose a new GMI learning algorithm using SVM, referred to
GMI-SVM, which uses the recently proposed “Label Genera-
tion” strategy [18] and maximum margin criterion to effectively
rerank the relevant images by propagating the labels from the
bag level to the instance level.

To facilitate (G)MI learning in our framework, we conduct
a so-called weak bag annotation process to automatically find
positive and negative bags for training classifiers. First, we in-
troduce an instance ranking score defined by the similarity be-
tween the textual query and each relevant image. Then, we ob-
tain a bag ranking score for each bag by averaging the instance
ranking scores of the instances in this bag. Finally, we rank all
bags with the bag ranking score. In our automatic bag annota-
tion method, the top ranked bags are used as the pseudopositive
bags, and pseudonegative bags are obtained by randomly sam-
pling a few irrelevant images that are not associated with the
textual query. After that, these bags are used to train a classi-
fier that is then used to rerank the database images. Fig. 2 shows
the overall flowchart of our proposed bag-based framework for
the TBIR. We will show in the experiments that our framework
with the automatic bag annotation method performs much better
than the existing image reranking methods [12], [42]. Moreover,
users are also allowed to manually annotate positive/negative
bags during the RF process, and our experiments show that the
retrieval performance of GMI-SVM can be further improved by
using the manually labeled training bags.

We summarize the main contributions of this paper.
• We present a novel bag-based framework that enables us to

formulate the image reranking problem as an MI learning
problem and improve TBIR performance by using MI
learning methods.

• We further reformulate our problem as a GMI learning
problem that relaxes the constraints in the traditional
MI learning problem. To address the ambiguities on the
instance labels in both positive and negative bags, we
propose GMI-SVM, which outperforms other traditional
MI learning methods for image retrieval.

• We develop an automatic weak bag annotation method
to effectively find positive and negative bags for (G)MI
learning methods.
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II. RELATED WORK ON MI LEARNING

MI learning methods have been proposed to solve learning
problems with ambiguity on training samples. In the traditional
supervised learning problems, there is clear knowledge on the
labels of training samples. In contrast, in MI learning problems,
a label only accompanies each training “bag,” which consists
of several instances (i.e., training samples). Specifically, in the
traditional setting of MI learning problems, each positive bag
has at least one positive instance, while a negative bag has no
positive instances. MI learning methods [1], [7], [20], [35], [40]
learn models from the training data with such ambiguous label
information and predict the label of test bags or instances.

Diverse density (DD) [20] finds the concept point that is near
at least one instance in the positive bags and far from all in-
stances in the negative bags. EM-DD [40], i.e., the EM varia-
tion of the DD, iteratively guesses the positive instances in each
positive bag and refines the hypothesis of the concept. Citation

NN [35] predicts the label of a bag based on its nearest neigh-
boring bags (referred to as “references”) and the bags that count
it as one of nearest neighbors (referred to as “citers”). However,
all these methods have a high computational cost, which makes
them unsuitable for large-scale systems.

Andrews et al. [1] proposed two variants of SVM, i.e.,
mi-SVM and MI-SVM, to solve MI learning problems. The
mi-SVM maximizes the instance margin jointly over possible
label assignments, as well as hyperplanes, while MI-SVM
maximizes the bag margin. Although these two methods are
implemented with mixed integer programming, their speeds are
much faster than the previous methods.

MI learning methods have also been used in region-based
image retrieval [21], [29], [30], [41] and locating image regions
of interest [17]. In these applications, images are considered
as bags, whereas regions in the images are considered as in-
stances. Since images from the same concept usually have sim-
ilar regions, these regions can be considered as the positive in-
stances in the positive bags, and thus this problem can be formu-
lated as an MI learning problem. However, these region-based
image retrieval methods are too computationally expensive for
large-scale image databases, such as the NUS-WIDE database
used in this paper. Note that the work in [34] used a sparse MI
learning method called sMIL [2] and its variant called weighted
sMIL for bag-based learning. However, they assume that the
bags are constructed by using image search engines in mul-
tiple languages, which restricts its applicability and cannot be
directly used in our setting.

In this paper, we propose a new bag-based reranking frame-
work for large-scale TBIR by treating one image cluster as one
“bag” and the images in a bag as “instances.” In our setting, each
bag (cluster) can have a rough estimate of the proportion of pos-
itive instances (images). For example, the positive bags consist
of at least positive instances, whereas the negative
bags have at most positive instances. Note that our new
assumption is different from the conventional MI assumption
in two aspects: 1) it removes the strict assertion of the negative
bags and 2) it provides more information for positive bags. To
address the ambiguities on the instance labels in both positive

and negative bags, we then generalize the MI learning problem
under the new setting and develop a GMI-SVM algorithm for
label prediction on instances (images) to enhance the retrieval
performance.

III. BAG-BASED WEB IMAGE RERANKING FRAMEWORK

Here, we present our proposed bag-based reranking frame-
work for large-scale TBIR. Our goal is to improve the Web
image retrieval in Internet image databases, such as .
These Web images are usually accompanied by textual de-
scriptions. For the th Web image, the low-level visual feature

(e.g., color, texture, and shape) and the textual feature
(e.g., term frequency) can be extracted. We further aggregate
them into a single feature vector for subsequent operations,
namely, , where is a weight parameter.

A. Initial Ranking

After the user provides a textual query (e.g., “fox”), our
system exploits the inverted-file method [19] to automatically
find relevant Web images whose surrounding text contains the
textual query tag , as well as irrelevant Web images whose
surrounding text do not contain . For each retrieved relevant
image , an instance ranking score can be defined as follows [3]:

(1)

where is the total number of tags in image and is the
rank position of the query tag in the tag list of image . If

and , then we have . In other
words, when one relevant image contains the textual query
at the top position in its tag list, this image will be assigned a
higher ranking score. When the positions of the query tag are
the same for the two images (i.e., ), the ranking score is
decided by and , namely, the image that has fewer tags is
preferred.

B. Weak Bag Annotation Process

In our framework, each image is considered as an “instance.”
To construct “bags,” we partition the relevant images into clus-
ters using the -means clustering method based on visual and
textual features. After that, each cluster is considered as a “bag.”
To facilitate (G)MI learning methods in our framework, we have
to annotate positive and negative bags to train classifiers. Note
that only the bags are to be annotated, while the labels of in-
stances in each bag are still ambiguous. Therefore, we refer to
the annotation of a bag as weak bag annotation.

Specifically, for each bag , its bag ranking score is
defined as the average instance ranking score, i.e.,

(2)

where stands for the cardinality of bag .
In our automatic bag annotation method, the top-ranked bags

with higher bag ranking scores are used as pseudopositive bags,
and the same number of pseudonegative bags is obtained by ran-
domly sampling a few irrelevant images. We will show in the
experiments that our GMI learning method GMI-SVM with this
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simple bag annotation method can achieve better retrieval per-
formances when compared with those in [12] and [42]. Note that
our proposed automatic weak bag annotation method is similar
to the pseudo-RF algorithm proposed in [37], which can anno-
tate instances, whereas our approach can annotate high-confi-
dent bags, as demonstrated in Section IV-B.

C. GMI Learning

We denote the transpose of a vector/matrix by superscript .
We also define as the identity matrix and and as
the zero vector and the vector of all 1’s, respectively. Moreover,
the element-wise product between matrices and is repre-
sented as . Inequality means
that for . A positive or negative bag is
associated with a bag label . We also denote the un-
observed instance label of as . With this definition
of bags, we can define the GMI constraint on the instance labels
of positive and negative bags, respectively, as

for

for (3)

In other words, positive instances take up at least portion
of a positive bag, whereas positive instances occupy at most
portion of a negative bag. Note that traditional MI learning
[1], [40] is actually a special case of GMI learning with

and . In contrast to the restrictive MI assumption
in [1] and [40], the GMI constraint in (3) is more suitable to this
application.

We further denote as the vector of in-
stance labels and and satisfies (3)}
as the domain of . Then, the decision function of the GMI
learning can be learned by minimizing the following structural
risk functional:

(4)

where is the regularization term, is a loss function
for each instance, and is the parameter that trades off the com-
plexity and the fitness of the decision function . Note that the
constraints in (3) are integer constraints; thus, the corresponding
GMI problem (4) is usually formulated as a mixed integer pro-
gramming problem.

Discussion: We note that Scott et al. addressed “GMI
learning” in [25], as well as in their subsequent work [28]–[30].
However, their algorithms, named “GMIL-1” and “GMIL-2,”
are intrinsically different from ours. In their MI assumption, the
label of a bag is represented by a threshold function rather than
as a binary label (i.e., ), which is used in conventional
MI learning methods and this paper. Moreover, their work can
only predict the label of a bag rather than that of an instance.
Although their methods can achieve the state-of-the-art perfor-
mance in bag prediction, how to predict the labels of image
instances is unclear. Therefore, their work is unsuitable for
reranking the relevant images in our image retrieval application.

D. GMI-SVMs

In this paper, we assume the decision function is in form of
and the regularization term is .

We adopt the formulation of the Lagrangian SVM, in which the
square bias penalty and the square hinge loss for each in-
stance are used in the objective function. The GMI optimization
problem can be written as the following constrained optimiza-
tion problem:

s.t.

(5)

where values are slack variables and defines the
margin separation. By introducing a dual variable for
each inequality constraint in (5) and the kernel trick (i.e.,

), we arrive at the following minimax
saddle-point problem:

(6)

where is the vector of the dual variables
and is the domain of . We
also define as an kernel matrix and

as an transformed kernel matrix for
the augmented feature mapping of kernel

. Note that the instance labels in
(6) are also integer variables, and thus, (6) is a mixed integer
programming problem, which is computationally intractable in
general.

Recently, Li et al. [18] proposed an efficient convex optimiza-
tion method to solve the mixed integer programming problem
for maximum margin clustering. In this paper, we extend their
algorithm [18] to solve the mixed integer programming problem
in (6). Our proposed method is then referred to as the GMI-
SVM.

1) Convex Relaxation: First, let us consider interchanging
the order of and in (6). Then, we have

(7)

According to the minimax theorem [16], the optimal objec-
tive of (6) is an upper bound of that of (7). By introducing , we
can further rewrite (7) as follows:

(8)

where is any feasible solution in . For the inner optimization
subproblem of (8), we can obtain its Lagrangian as follows by
introducing a dual variable for each constraint:

(9)
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Setting the derivative of Lagrangian (9) with respect to to
zero, we have . Denote as a vector of values
and as the domain of . We can then
arrive at its dual form as follows:

(10)

Replacing the inner maximization subproblem in (8) with its
dual (10), we have the following optimization problem:

(11)

The equality holds as the objective function is concave in
and linear in , and thus, we can interchange the order of

and in (11). Observe that (11) is analogous
to the multiple kernel learning (MKL) problem [22], except that
a label-kernel matrix, which is a convex combination of the
base label-kernel matrices , is to be learned. Hence,
(11) can be viewed as a multiple label-kernel learning (MLKL)
problem.

2) Cutting-Plane Algorithm for GMI-SVM: Although is
finite and the MLKL problem (11) is a special case of MKL,
there are candidates of the label vector , and thus, the
number of base label-kernel matrices is exponential
in size. Thus, it is not possible to directly apply recently pro-
posed MKL techniques such as SimpleMKL [22] to our pro-
posed GMI-SVM.

Algorithm 1: Cutting-plane algorithm for GMI-SVM.

1:Initialize for as , and set ;

2:Compute MKL to solve and in (11) based on ;

3:Use to select the most violated and set ;

4:Repeat lines 2 and 3 until convergence.

Fortunately, not all quadratic inequality constraints in (8) are
necessarily active at optimality, and only subset of
these constraints can usually lead to a very good approxima-
tion of the original optimization problem. Therefore, we can
apply the cutting-plane method [15] to handle this exponential
number of constraints. Moreover, the same strategy has been
also applied in the recently proposed infinite kernel learning
(IKL) [9], [10], in which the kernel is learned from an infinite
set of general kernel parameters, and thus, MLKL (with kernel

) can be deemed as a variant of IKL. As
a result, our GMI-SVM enjoys the same convergence of IKL
[9]. The whole algorithm is summarized in Algorithm 1. First,
we set subset , where the instance label vector is
initialized according to the bag labels. Since is no longer ex-
ponential in size, one can apply MKL to learn the label kernel to
obtain both and . With a fixed , the label vector with a

quadratic inequality constraint in (8), which is the most violated
one by the current solution, is then added to . The process is
repeated until the convergence criterion (i.e., the relative change
of the objective values of (11) between two successive iterations
is less than 0.01) is met. After solving the MLKL problem, the
decision function can be obtained by

where and .

Algorithm 2: Finding the approximation of the most violated
.

1:Initialize for all in positive bags and
for all in negative bags ;

2:for each positive bag do

3:Fix the labeling of instances in all the other bags, and
find the optimal that maximizes the objective of (12) by
enumerating the candidates of in ;

4:end for

5:for each negative bag do

6: Fix the labeling of instances in all the other bags, and
find the optimal that maximizes the objective of (12) by
enumerating the candidates of in ;

7:end for

8:Repeat lines 2–7 until convergence.

3) Finding the Approximation of the Most Violated : Sim-
ilar to IKL, finding the most violated constraint (indexed by )
in MLKL is problem specific and is the most challenging part in
cutting-plane algorithms. Here, we discuss how to search for the
most violated constraint to satisfy the GMI constraints in (3).

Referring to (8), to find the most violated , we have to solve
the following problem:

(12)

Note that finding the most violated that maximizes (12) is a
computationally expensive problem when the bag size is large.
To accelerate our framework, we propose to use the instance
ranking score defined in (1) to enforce the total number of in-
stances in each positive bag to be 15 (see Section IV-A for more
details). Moreover, we can beforehand exclude a large number
of candidates of by checking our proposed GMI constraint
in (3). In order to further speed up the process, we develop a
simple but effective method. The basic idea is to enumerate the
candidates of satisfying (3) for each bag by fixing the la-
beling of other bags. Then, we iteratively choose the best for

, which maximizes (12), where is the vector of instance la-
bels in . The procedure will be terminated when the relative
change of the objective values of (12) between two successive
iterations is less than 0.001. The detailed procedure is listed in
Algorithm 2.



DUAN et al.: IMPROVING WEB IMAGE SEARCH BY BAG-BASED RERANKING 3285

IV. EXPERIMENTS

In our experiments, for any given textual query (e.g., “fox”),
the relevant Web images that are associated with the word “fox”
are firstly ranked using (1). We refer to this initial Web image
search method as Init_Ranking. We compare our bag-based
reranking framework and two existing methods, i.e., WEBSEIC

[42] and information bottleneck (IB) reranking (IBRR) [12],
for image reranking. It is worth noting that existing MI learning
algorithms can be readily adopted in our reranking framework.
Observing that the axis-parallel rectangle [7] and the EM-DD
[40] are inefficient for this large-scale image retrieval task and
citation NN [35] and MI-SVM [1] are more suitable for pre-
dicting the labels of bags rather than instances, we only employ
mi-SVM [1] and single-instance learning SVM (SIL-SVM)
[2] in this paper. Note that all the instances in a negative bag
are treated as negative instances in mi-SVM [1] and SIL-SVM
is a special MI learning algorithm, in which all the instances
in positive bags (negative bags) are assumed to be positive
(negative). When the automatic weak bag annotation process is
performed, SIL-SVM is similar to the pseudorelevance-feed-
back-based method in [37]. In contrast, the assumption in our
newly proposed GMI-SVM is that positive instances comprise
at least a certain portion of a positive bag, while a negative bag
may contain at most a few positive instances.

For WEBSEIC, the top-ranked 400 relevant images are used
for KDE [24], as suggested in [42]. Since we do not have the
Web page assumption in our application, the 400 images are
directly reranked according to the responses from the density
function. For IBRR [12], we also choose the top-ranked 400
relevant images, as well as randomly sampled 400 irrelevant
images for IB clustering. To fairly compare different reranking
methods, we only rerank the top-400 relevant images from the
initial text-based search. We do not compare GMI-SVM using
the pseudopositive and pseudonegative training bags with other
image reranking methods such as those in [5] and [31] because
they employ additional manual annotation, which is not required
in our GMI-SVM. We also do not compare our work with graph-
based methods such as those in [13], [14], and [32] because
the recent work [31] shows that these unsupervised reranking
methods can only achieve limited performance improvements.
In practice, the manifold assumption may not hold well for rel-
evant Web images with diverse appearance variations. More-
over, some graph-based methods [14], [36] using SIFT features
generally require high computational costs, whereas our frame-
work can achieve reasonable efficiency by using unoptimized
MATLAB code.

A. Experimental Setup

We use the challenging real-world NUS-WIDE data set [4]
for experiments. To the best of our knowledge, it is one of the
largest annotated Web image data sets publicly available to re-
searchers today. It contains 269 648 images downloaded from
the photo sharing Website and their ground-truth anno-
tations for 81 concepts. Each image is also associated with tags
given by users. All the 269 648 images are employed as
the database images, and all the 81 concept names are used as
textual queries to perform the TBIR.

For performance evaluation, we use top- retrieval precision,
which is defined as the percentage of the correctly retrieved
images in the top- retrieved images. Since online users are
usually interested in the top-ranked images only, we set as
20, 40, 60, 80, and 100. We also use average precision (AP) as
another evaluation metric. It corresponds to the multipoint AP
value of a precision-recall curve and incorporates the effect of
recall when AP is computed over the entire classification re-
sult set. The mean AP (MAP) (resp. mean top- precision) is
the mean of the AP (resp. the top- precision) over all the 81
concepts. For all SVM-based methods, we set the regulariza-
tion parameter and use the Gaussian kernel with the
bandwidth parameter set as the variance of the instances in the
training bags.

Similar to [4], we employ three types of global features. For
the grid color moment, we extract the first three moments of
three channels in the LAB color space from each of the 5
5 fixed grid partitions and aggregate the features into a single
225-D feature vector. The edge direction histogram feature in-
cludes 73 dimensions with 72 bins corresponding to edge di-
rections quantized to five angular bins and one bin for nonedge
pixels. We also extract a 128-D wavelet texture feature by per-
forming the pyramid-structured wavelet transform and the tree-
structured wavelet transform. We further concatenate all three
types of visual features into lengthy feature vectors and nor-
malize each feature dimension to zero mean and unit standard
deviation. To improve the speed and reduce the memory cost,
principal component analysis is then applied for dimension re-
duction. We observe that the first 119 principal components are
sufficient to preserve 90% of the energy. All the images are then
projected into the 119-D visual feature space.

For each image, we also extract the textual features from the
associated tags. We first remove high-frequency and misspelled
words that are not meaningful (e.g., “a,” “the,” “srk,” “xt,” and
“de”) and convert all the remaining words into their prototypes.
We then choose the top-200 words with the highest frequency
as the vocabulary. For each image, the corresponding 200-D
term-frequency feature is then extracted as the textual feature.
For the th image, we further concatenate the visual feature
and the textual feature together to form the lengthy feature
vector , namely, , where the weight parameter

is empirically fixed as 0.1 in the experiments. The database
images are grouped into bags by using the -means clus-
tering method with the distance metric defined as follows:

(13)

where , and , are the visual and textual features of the
th and th images, respectively.

Recall that, in our GMI-SVM, we enumerate all possible
to find the most violated (see Section III-D-3). We observe

that it is computationally expensive to exploit the enumeration
method for GMI-SVM if the number of instances in one bag is
larger than 15. We therefore empirically set in
the -means clustering method, where is the total number of
relevant images. We throw away the clusters that have instances
fewer than 15. For the remaining clusters, we only keep the
top-ranked 15 instances with the highest instance ranking scores
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Fig. 3. Mean top-� precisions over 81 concepts of all methods. One positive
bag and one negative bag are used for GMI-SVM, SIL-SVM, and mi-SVM.

TABLE I
MAPS OVER 81 CONCEPTS OF ALL METHODS. ONE POSITIVE BAG AND ONE

NEGATIVE BAG ARE USED FOR GMI-SVM, SIL-SVM, AND MI-SVM

to form one bag, and the remaining instances are discarded. The
bags are then ranked according to the average ranking score
of the 15 instances in the bags. In the automatic bag annota-
tion scheme, the top-ranked bags are used as the positive
bags, and we also randomly sample irrelevant images to
construct negative bags. The positive and negative bags
are then used as the training data for GMI-SVM, mi-SVM, and
SIL-SVM.

B. Results of Retrieval Performances

Fig. 3 and Table I show the mean top- precisions and MAPs
of all methods. For GMI-SVM, SIL-SVM, and mi-SVM, one
positive bag and one negative bag are used for training. For
GMI-SVM, we set proportion for positive bags and
proportion for negative bags to fairly compare our
GMI-SVM and the other MI learning methods mi-SVM and
SIL-SVM. We will discuss the performance variations using
different parameters of and in Section IV-D. We observe
that all reranking methods outperform the baseline method
Init_Ranking, which demonstrates the effectiveness and the
importance of reranking for the TBIR. Moreover, SIL-SVM,
mi-SVM, and GMI-SVM achieve significant performance im-
provements over the other two traditional reranking methods,
i.e., WEBSEIC and IBRR, which demonstrates the effectiveness
of our proposed bag-based reranking framework. We also ob-
serve that the performances of SIL-SVM and mi-SVM are the
same. A possible explanation is that, for mi-SVM, the instances
in a positive bag are all initialized as positive, and this initial-
ization for positive bags inherently satisfies the convergence
criteria in mi-SVM. Thus, after the iterative updating process,
all instances in a positive bag are labeled as positive (see [1] for
more details about mi-SVM), which is exactly the same as that
in SIL-SVM. Our proposed GMI-SVM outperforms SIL-SVM
and mi-SVM in all cases. It can be explained from two aspects.
On one hand, SIL-SVM and mi-SVM consider all instances
in positive bags as positive and all instances in negative bags
as negative. Since positive bags may contain some negative

instances, the classification performance can be degraded if
those negative instances are enforced to be positive. On the
other hand, GMI-SVM based on the convex relaxation in [18]
can obtain a better optimal solution than other MI learning
algorithms for the bag-based reranking framework. The top-ten
retrieved images of GMI-SVM, SIL-SVM, mi-SVM, WEBSEIC,
IBRR, and Init_Ranking for the textual query “fox” are illus-
trated in Fig. 4. Again, we observe that GMI-SVM achieves the
best performance.

C. Results Using Different Numbers of Training Bags

Based on our bag-based framework, we also compare the per-
formances of SIL-SVM, mi-SVM, and our proposed method
GMI-SVM using different numbers of positive/negative training
bags. In this experiment, we set , and 10. The re-
sults of SIL-SVM, mi-SVM, and GMI-SVM are shown in Fig. 5
and Table II. From the results, we observe that GMI-SVM gen-
erally outperforms the other two methods in terms of both the
mean top- precisions and the MAPs when using different .
When setting , and 5, SIL-SVM and mi-SVM achieve
similar performances. Nevertheless, when using a larger
value (i.e., and 10), SIL-SVM outperforms mi-SVM.
An explanation is that, with a large number of training bags,
it is generally infeasible to find the optimal solution to the MI
learning problem by using the specifically designed heuristics in
mi-SVM, which gives mi-SVM worse performances. For GMI-
SVM, we also observe that the MAP when setting is
worse than that when setting (see Table II). A possible
explanation is that the lower ranked training bags are less re-
liable (i.e., it is more likely that, for the lower ranked positive
training bags, the GMI constraint that positive instances take up
at least portion cannot be satisfied). Therefore, robust classi-
fiers cannot be learned by using these lower ranked bags.

D. GMI-SVM Using Different Positive Proportions for Bags

Recall that, in the proposed GMI assumption, positive in-
stances take up at least proportion in a positive bag and at most
proportion in a negative bag. To evaluate the performance vari-
ations using different and , we set
and in this experiment. Given the specific
and , we use positive and negative bags to train the
GMI-SVM classifier, where is set as 1, 3, 5, 7, and 10. In
Table III, we report the best result of GMI-SVM among the re-
sults obtained from .

We observe that, for a fixed , the retrieval performance will
be degraded if becomes too large (i.e., and 0.9).
An explanation is that some top-ranked positive bags may not
contain a large proportion of truly positive instances for every
textual query. Specifically, we use the ground-truth labels of
the images to analyze the average proportion of truly positive
instances in each positive bag of the top-ranked ten bags, and
we observe that the average proportion in each positive bag over
all 81 concepts is 56.0% when setting . As a result,
the performance of GMI-SVM using or will be
degraded when the constraints on positive bags are not satisfied.
It also explains why GMI-SVM outperforms SIL-SVM, because
SIL-SVM is a special case of GMI-SVM when setting
and .
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Fig. 4. Top-ten retrieved images of all methods for the textual query “fox.” (Red boxes) Incorrect results.

Fig. 5. Mean top-� precisions over 81 concepts of GMI-SVM, SIL-SVM, and mi-SVM using � positive and � negative bags, where � � �� �� �� �, and
10. (a) � � �. (b) � � �. (c) � � �. (d) � � �. (e) � � ��.

TABLE II
MAPS OVER 81 CONCEPTS OF GMI-SVM, SIL-SVM, AND MI-SVM USING

DIFFERENT NUMBERS OF POSITIVE AND NEGATIVE TRAINING BAGS

From Table III, we also observe that, for a fixed , GMI-SVM
using generally achieves better performances compared
with the results when setting and 0.5, which is con-
sistent with our observation that the negative bags generally do
not contain positive instances. Specifically, we also analyze the
ground-truth labels of the instances in the negative bags, and we
observe that the average proportion of truly positive instances in
a negative bag over all 81 concepts is only 1.15% when setting

. Considering that we fix the number of instances in
each positive/negative bag as 15 in the experiments, the number
of truly positive instances in a negative bag is approximately

TABLE III
MAPS OVER 81 CONCEPTS OF GMI-SVM USING DIFFERENT POSITIVE

PROPORTIONS (I.E., � AND �) FOR POSITIVE AND NEGATIVE BAGS. EACH

RESULT IN THE TABLE IS THE BEST AMONG THE RESULTS OBTAINED BY

USING DIFFERENT NUMBERS OF POSITIVE AND NEGATIVE TRAINING BAGS

(I.E., � � �� �� �� �, AND 10)

zero on the average. From the experiments, we also observe that
the per-concept APs of some concepts (such as “person,” “lake,”
“house,” and “plant”) can be improved by setting
rather than . This observation demonstrates that, for those
concepts having more positive instances in the negative bags,
GMI-SVM can successfully cope with the ambiguities on the
instances in the negative bags and thus improve the retrieval per-
formance. Considering that the MAP of GMI-SVM is the best
when setting and (see Table III), we fix
and in Sections IV-B, IV-C, IV-E, and IV-F.
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E. GMI-SVM With Manually Annotated Training Bags

In Sections IV-B–IV-D, the training bags are automatically
selected based on the bag ranking score in (2) for GMI-SVM.
However, such an automatic weak bag annotation method
cannot always guarantee that the GMI constraints in (3) for
positive and negative bags are satisfied. RF is allowed in our
bag-based framework, in which users are required to manually
annotate training bags to further improve the performance of
GMI-SVM. For better presentation, we refer to GMI-SVM
using the pseudotraining bags obtained from the automatic
weak bag annotation method as GMI-SVM and to GMI-SVM
using the manually annotated training bags obtained from the
RF as GMI-SVM_RF.

In this experiment, we simulate the manual bag annotation
process by using the ground-truth labels of the images. For each
concept, we use one positive bag and one negative bag as the
training data. Since the negative bags do not contain any positive
instances in most cases, only the positive bags need to be man-
ually annotated. Specifically, if a positive bag contains at least
proportion of truly positive instances, it is annotated
as a truly positive bag. Based on the initial bag ranking results
according to the bag ranking score in (2), we observe that only
72 concepts have at least one truly positive bag after checking
with the ground-truth labels. Therefore, we report MAPs over
the 72 concepts only in this experiment.

Although the image retrieval performance can be improved
after conducting RF [11], [19], [39], it is generally time con-
suming to manually check a considerable number of bags to ob-
tain one truly positive bag in our bag-based image reranking ap-
plication. After ranking the bags according to the bag ranking
score, the users conduct RF to annotate the top-ranked bags in
order to obtain the truly positive bags for training. We refer to
GMI-SVM using the RF method as GMI-SVM RF if the
bags are ranked according to the initial bag ranking score in
(2). To facilitate the annotation process, we also propose another
new bag ranking score in (14) and refer to GMI-SVM using
the RF method as GMI-SVM RF if the bags are ranked ac-
cording to . Specifically, we first learn an initial GMI-SVM
classifier by using the automatic weak bag annotation process
(see Section III-B). Then, the decision values of the instances
from the learned GMI-SVM classifier can be used to calculate
the new bag ranking score as follows:

(14)

where is the decision value of the training instance
from the initial GMI-SVM classifier. Recall that the images
are grouped into clusters using -means clustering; thus, we
can also use to rank the instances in each cluster, in
which we still keep the top-ranked 15 instances to construct
one pseudopositive bag and discard the remaining instances. It
is noteworthy that the top-ranked 15 instances based on
may be different from the top-ranked 15 instances based on the
initial instance ranking score in (1). After that, we rank the bags
according to the new bag ranking score in (14) and employ the
ground-truth labels to find the top-ranked truly positive bags,
in which the corresponding GMI constraints are satisfied.

TABLE IV
MAPS OVER 72 CONCEPTS OF GMI-SVM USING PSEUDOTRAINING BAGS

OBTAINED FROM THE AUTOMATIC WEAK BAG ANNOTATION METHOD AND

GMI-SVM_RF USING MANUALLY ANNOTATED TRAINING BAGS OBTAINED

FROM THE RF. NOTE, FOR GMI-SVM_RF, THE TOP-RANKED TRULY POSITIVE

BAGS CAN BE OBTAINED BY USING THE INITIAL BAG RANKING SCORE IN (2)
[RESP. THE NEW BAG RANKING SCORE IN (14)], WHICH IS REFERRED TO

AS GMI-SVM RF (RESP. GMI- SVM RF ). ONE POSITIVE AND ONE

NEGATIVE BAG ARE USED FOR ALL METHODS

TABLE V
AVERAGE CPU TIME (IN SECONDS) PER TEXTUAL QUERY FOR ALL METHODS

We report the MAPs over 72 concepts of GMI-SVM,
GMI-SVM RF , and GMI-SVM RF in Table IV. We
observe that both GMI-SVM RF and GMI-SVM RF
outperform GMI-SVM in terms of the MAP over 72 con-
cepts, which demonstrates that the retrieval performance of
GMI-SVM can be further improved by using the manually
annotated training bags. GMI-SVM RF performs slightly
better than GMI-SVM RF . A possible explanation is that
the top-ranked truly positive training bags based on the new bag
ranking score in (14) are more reliable and can be thus used to
learn a more robust classifier.

In GMI-SVM RF (resp. GMI-SVM RF ), on the av-
erage, 1.46 (resp. 2.03) bags need to be examined by users be-
fore obtaining one truly positive bag for each concept. Thus,
the annotation efforts from the users can be greatly alleviated
by using the new bag ranking score in (14).

It is worth mentioning that the users are generally reluctant to
conduct manual annotations. Thus, we just treat GMI-SVM_RF
as an additional extension, and it is therefore not the main focus
of this paper. More details (e.g., how to develop a novel and ef-
fective annotation user interface to facilitate the bag annotation
process in the real applications and how to fairly compare our
approach with conventional RF methods) will be investigated in
the future.

F. CPU Time for Image Retrieval and Convergence Analysis

We report the average central processing unit (CPU) time of
the TBIR for different methods. For GMI-SVM, SIL-SVM, and
mi-SVM, we still use one positive bag and one negative bag ob-
tained by using the automatic weak bag annotation process. All
the experiments are implemented with unoptimized MATLAB
codes and performed on a workstation (3.33-GHz CPU with
32-GB random access memory). The average CPU-time overall
textual queries (81 concepts) are shown in Table V. Init_Ranking
is very fast because of the utilization of the inverted-file tech-
nique. Moreover, WEBSEIC performs very fast since only 400
relevant images are reranked by using a KDE-based method.
SIL-SVM and mi-SVM have comparable training time because
mi-SVM converges within a few iterations in most cases. IBRR
requires a lot of time for the IB clustering process. Moreover, our
proposed method GMI-SVM achieves reasonable efficiency for
TBIR using unoptimized MATLAB codes. For GMI-SVM, on
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Fig. 6. Illustration of the convergence of GMI-SVM. (a) “Bear.” (b) “Bird.” (c) “Bridge.”

the average, the iterative optimization algorithm (i.e., the cut-
ting-plane algorithm introduced in Section III-D-2) takes about
six iterations to converge for each concept. In Fig. 6, we take
three concepts (i.e., “bear,” “bird,” and “bridge”) as examples to
illustrate the convergence of GMI-SVM, in which the vertical
axis indicates the objective value of (11) and the horizontal axis
gives the number of iterations. We have similar observations
for other concepts.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a bag-based framework for
large-scale TBIR. images with textual descriptions (i.e.,
tags) have been used for this real-world application. Given a
textual query, relevant images are to be reranked after the ini-
tial text-based search. Instead of directly reranking the relevant
images by using traditional image reranking methods, we have
partitioned the relevant images into clusters. By treating each
cluster as a “bag” and the images in a bag as “instances,” we
have formulated this problem as a MI learning problem. MI
learning methods such as mi-SVM can be readily adopted in
our bag-based framework. To address the ambiguities on the in-
stance labels in both positive and negative bags, we have de-
veloped GMI-SVM to further enhance retrieval performance, in
which the labels from the bag level have been propagated to the
instance level. To facilitate (G)MI learning in our framework,
we have propose an automatic bag annotation method to auto-
matically find positive and negative bags for training classifiers.
Our framework using the automatic bag annotation method can
achieve the best performance, as compared with other tradi-
tional image reranking methods on the NUS-WIDE data set.
Moreover, we have shown that the performance of GMI-SVM
can be further improved, by using the truly positive training bags
from user annotation in a RF process.

Currently, we use the -means clustering method based on
visual and textual features to partition the relevant images into
bags/clusters in our weak bag annotation process. In the future,
we will investigate more effective clustering methods to further
improve the performance of our framework. Inspired by [8], we
also plan to extend this paper for video event recognition.
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