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Abstract—Domain adaptation has shown promising results
in computer vision applications. In this paper, we propose a
new unsupervised domain adaptation method called domain
adaptation by shifting covariance (DASC) for object recognition
without requiring any labeled samples from the target domain.
By characterizing samples from each domain as one covariance
matrix, the source and target domain are represented into two
distinct points residing on a Riemannian manifold. Along the
geodesic constructed from the two points, we then interpolate
some intermediate points (i.e., covariance matrices), which are
used to bridge the two domains. By utilizing the principal com-
ponents of each covariance matrix, samples from each domain
are further projected into intermediate feature spaces, which
finally leads to domain-invariant features after the concatenation
of these features from intermediate points. In the multiple source
domain adaptation task, we also need to effectively integrate
different types of features between each pair of source and
target domains. We additionally propose an SVM based method
to simultaneously learn the optimal target classifier as well
as the optimal weights for different source domains. Extensive
experiments demonstrate the effectiveness of our method for both
single source and multiple source domain adaptation tasks.

Index Terms—Domain adaptation, riemannian manifold,
support vector machine.

I. INTRODUCTION

IN MANY real world applications, the domain of interest
(i.e., the target domain) contains very few or even no
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Fig. 1. Domain adaptation by using intermediate domains.

labeled samples because the collection of labeled samples is
generally expensive and time consuming. The goal of domain
adaptation is to learn robust target classifiers in this scenario
by leveraging a large number of labeled training samples
from other domains (i.e., auxiliary/source domains). Domain
adaptation methods have been successfully used in many
computer vision applications (please refer to Section II for
more details).

In domain adaptation, the samples from the source domain
and the target domain often have different data distributions.
To reduce the mismatch of data distributions, the technique
which introduces intermediate domains (see Fig. 1) can be
employed to extract domain invariant features to bridge the
distribution mismatch between the source and target domain.
Specifically, Gopalan et al. [1] proposed an unsupervised
domain adaptation method [called sampling geodesic flow
(SGF) in [2]] by representing each domain as one subspace
spanned by principal components of samples. Then they
constructed a few intermediate domains between the source
and target domains by interpolating subspaces between the two
subspaces. Gong et al. [2] further extended [1] and proposed a
new kernel based approach called geodesic flow kernel (GFK)
by integrating an infinite number of subspaces. However, mod-
eling one domain as a subspace is not sufficient to represent
the distribution difference between two domains, especially
when the two subspaces intersect in a common subspace.
We give two examples in Fig. 2, where we plot the samples
from two domains (i.e., red points and blue triangles) in a
2-D intersected subspace of two domains. It can be observed
that the distributions of the samples from two domains are
different. However, existing subspace-based methods such as
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Fig. 2. Distributions of the samples from different domains in the 2-D
intersected subspace. (a) Samples of touring-bike from Caltech and DSLR
datasets. (b) Samples of video-projector from Caltech and Amazon datasets.

[1], [2] cannot be used to reduce the distribution mismatch in
the intersected subspace, since the principal angles between the
two subspaces of source and target domains are zero degrees in
the intersected subspace (see Section III-A for more details).

In Section III, we propose a new unsupervised domain
adaptation approach for object recognition, which can better
reduce the domain distribution mismatch in all the feature
dimensions without the aid of the subspaces as in [1] and
[2]. According to [3], any symmetric positive-definite (SPD)
matrix resides on a Riemannian manifold. Thus, we assume the
covariance matrices of the samples from two domains can be
represented as two distinct points on a Riemannian manifold.
Then we propose a simple but effective approach to seek for a
geodesic flow curve connecting these two points. Specifically,
we first embed the two distinct points into the log-Euclidean
space and interpolate a few isometric points in this space.
By inversely mapping these interpolated points back into the
original Riemannian manifold, we obtain a set of interpolated
covariance matrices. Then, we learn the projection matrices
from these covariance matrices by using PCA, with which the
samples from both domains can be projected into a set of inter-
mediate feature representations that bridge the two domains.
Linear discriminant analysis (LDA) [4] can be further used
to extract the discriminant features. Finally, we concatenate
all the features to form domain-invariant features and employ
the nearest neighbor (NN) or support vector machine (SVM)
classifier for the single source domain adaptation task.

For multi-domain adaptation, the domain-invariant features
from each pair of source and target domains are different, so
the existing multiple source domain adaptation methods cannot
be directly used to learn the optimal target classifier and select

the most relevant source domains. In Section IV, we propose
to simultaneously learn the optimal target classifier and the
optimal weights for different source domains. In Section V, we
conduct comprehensive experiments using the office [5] and
the Caltech256 [6] datasets under both single source domain
and multi-domain settings. The results clearly demonstrate the
effectiveness of our DASC as well as our new SVM-based
learning algorithm for domain adaptation tasks.

II. RELATED WORK

Domain adaptation methods have been used for document
classification [7], object recognition [1], [2], [5], [8]–[10],
object localization [11], face recognition [12], indoor loca-
tion [13], event recognition [14], [15], and video concept
detection [7], [16].

In general, these methods can be categorized as feature
(transform)-based approaches and classifier-based approaches.
The feature (transform)-based approaches try to learn domain-
invariant features for domain adaptation. Pan et al. [17]
proposed to learn the feature mapping by using the maximum
mean discrepancy embedding. Saenko et al. [5] proposed a
metric learning method by enforcing the samples that are
from the same class but different domains to be closer
with each other, which was further generalized in [8] by
learning an asymmetric nonlinear transformation. However,
their methods utilized the labeled data from the target do-
main, and hence cannot be applied to unsupervised domain
adaptation. Gopalan et al. [1] and Gong et al. [2] proposed
two methods to reduce the domain distribution mismatch
based on the Grassmann manifold assumption. Recently, Zhu
proposed a probabilistic graphic model based method [18], and
Shi et al. [10] proposed an information theory-based method
for domain adaptation.

The classifier-based approaches [16], [19], [20] directly
seek target classifiers (e.g., SVM-based classifiers) for do-
main adaptation. Yang et al. [19] developed Adaptive SVM
(A-SVM) by leveraging the existing source classifiers.
Duan et al. [16] proposed a new multiple kernel learning
(MKL)-based approach for domain adaption by simultane-
ously learning the optimal linear weight coefficients of base
kernels and the target classifier. Besides the two categories,
other methods were also proposed, such as structure corre-
spondence learning [21], sample reweighting [22], and feature
replication [23].

Multiple source domain adaptation methods [7], [15], [24],
[25] have also been studied. Schweikert et al. [24] proposed to
match the means of different domains based on kernel mean
matching (KMM) [22]. Duan et al. [7], [15] proposed two
multi-domain adaptation methods by leveraging or selecting
source domains. Chattopadhyay et al. [25] also proposed
to weight different source domains based on a smoothness
regularizer. Hoffman et al. [9] proposed a new clustering-
based approach to partition a dataset into latent domains
and extended [8] for multi-domain adaptation by learning
multiple transformations. Moreover, some theoretical results
can be found in [26]–[28], and [29]. Please refer to [30] for a
comprehensive survey on transfer learning.
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III. PROPOSED METHOD

In this paper, we denote a vector/matrix by a lower-
case/uppercase letter in boldface. The transpose of a vector or
matrix is denoted by the superscript ′. Moreover, we use Om×n

to represent an m-by-n matrix with all zeros and In to represent
an n-by-n identity matrix, respectively. We also define 1 as
the vector with all ones. The inequality u = [u1, . . . , un]′ ≥ 0
means that ui ≥ 0 for i = 1, . . . , n.

In the common setting of the domain adaptation (DA)
problem, the source domain samples are labeled and the target
domain contains no labeled samples or only a limited number
of labeled samples, which are referred to as unsupervised DA
and semi-supervised DA, respectively. In this paper, we focus
on the unsupervised DA. However, the proposed approach
can be easily applied to semi-supervised DA. Formally, let us
denote Xs = [xs

1, . . . , xs
Ns

] ∈ R
D×Ns as the source domain data

and denote ys
i ∈ {1, 2, . . . , K} as the label of the ith sample xs

i ,
where D is the feature dimension, Ns is the total number of
source samples and K is the total number of classes. Similarly,
we denote Xt = [xt

1, . . . , xt
Nt

] ∈ R
D×Nt as the target domain

data from the same K classes, where Nt is the total number
of target samples.

A. Subspace Analysis and Motivation

For domain adaptation, the key issue is to reduce the
mismatch on the data distributions of two domains. Since
the intermediate domains can contain more shared information
of two domains as shown in Fig. 1, projecting the examples
into the intermediate domains makes their distributions better
matched, and further leads to higher discriminability in these
auxiliary domains.

SGF [1] and GFK [2] characterize each domain with a
subspace spanned from one column-orthogonal matrix, and
then interpolate the intermediate subspaces between two do-
mains (or subspaces). Specifically, by performing PCA on the
examples from each domain, the source and target domains
can be regarded as two subspaces S1 and S2, which span
from their corresponding principal components S1, S2 ∈ R

D×d .
Therefore, the intermediate domains become the interpolated
points between S1 and S2. Furthermore, the interpolation pro-
cess can be performed by gradually rotating principal angles
of S1 and S2 until full overlap. Formally, the interpolated

points are S(τ ) = T
[

diag{cos(τθ1), . . . , cos(τθd )}
diag{sin(τθ1), . . . , sin(τθd )}

]
, where

0 ≤ τ ≤ 1, T is a transform matrix, diag is the diagonalization
operation, and θ1, . . . , θd are the principal angles between S1

and S2 [31]. The principal angles θ1, . . . , θd ∈ [0, π/2] are
defined as follows:

cos(θj) = max
uj∈S1

max
vj∈S2

u′jvj (1)

s.t. u′juj = v′jvj = 1, u′jui = v′jvi = 0, i < j. (2)

Intuitively, the first principal angle θ1 represents the smallest
angle between all pairs of basis vectors in two subspaces,
the rest of the principal angles are similarly defined between
the complementary subspaces of two subspaces with each
subspace being spanned by the corresponding selected basis
vectors.

However, when two subspaces S1 and S2 intersect into
a r -dim subspace Ŝ = S1

⋂S2, the first r principal angles
θ1, . . . , θr must be equal to zero-degree, where we only need
to assign the r principal components of the common subspace
Ŝ to {u1 = v1, u2 = v2, · · · , ur = vr } according to (1)
and (2). As a result, the first r columns of the intermediate
point S(τ ), corresponding to the common subspace Ŝ , remain
unchangeable when τ ranges from 0 to 1. In this case, after
projecting these samples into the intermediate subspaces as
used in SGF and GFK, the distributions of the samples from
two domains in this intersected subspace are still unchanged.
Empirically, given two domains, their intersection subspace is
usually nonempty especially when d is larger than D/2, and
meanwhile the distributions of samples from two domains are
usually different in the intersection subspace. Two examples
are shown in Fig. 2, where the samples are projected into the
2-D space by using the first two dimensions of PCA on the
common subspace.

To address the above problem, we directly represent each
domain by a covariance matrix instead of a subspace (i.e.,
a column-orthogonal matrix). Due to the robustness of the
covariance matrix for characterizing the data distribution, we
then use the intermediate covariance matrices between two
domains to reduce the data distribution mismatch.

B. Domain Adaptation by Shifting Covariance

We denote the covariance matrices of the source domain
and the target domain as Cs and Ct , respectively, which are
symmetric positive-definite (SPD) matrices.1 Since D-by-D
SPD matrices lie on a Riemannian manifold, so each domain
corresponds to a point on this manifold. To bridge the source
and target domains, we seek a geodesic path g(t)|1t=0 from
Cs to Ct on the Riemannian manifold in which we expect
g(0) = Cs , g(1) = Ct , and g(t) is a covariance matrix flowing
on the geodesic path with gradually changing from Cs to Ct

while t increases from 0 to 1.
By flowing on the geodesic path g(t), the covariance dif-

ference between two domains can be gradually reduced and
finally it reaches the target covariance. Nevertheless, it is non-
trivial to seek such a geodesic path on a Riemannian manifold.
partial differential equations (PDEs) may be used, however,
it is usually computationally expensive. Below we employ
a much more efficient approach called Log-Euclidean metric
which can achieve the same excellent theoretical properties on
a Riemannian manifold [3].

C. Computation With Log-Euclidean Metric

Before introducing the Log-Euclidean metric, we first give
the definition of matrix exponential exp(·) and logarithm log(·)
of a covariance matrix C as follows:

exp(C) = U exp(�)U′, log(C) = U log(�)U′

where C = U�U′ is from singular value decomposition (SVD).
Then, we further define the logarithmic multiplication � and

1We can always add a small positive value to the diagonal elements when
a covariance matrix is not SPD.
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Fig. 3. Generating intermediate covariances. Based on the Log-Euclidean
metric [3], we first transform the covariance matrices C0, Cn+1 as C̃0, C̃n+1
from the Riemannian manifold to the Log-Euclidean space by the matrix
logarithm operation, and then interpolate n isometric points C̃i|ni=1 along the
line (C̃0, C̃n+1). Finally, the matrix exponential operation is applied on C̃i to
obtain n intermediate covariance matrices Ci, i = 1, · · · , n.

the logarithmic scalar multiplication ⊗ on the SPD matrices
space as

C1 � C2 = exp(log(C1) + log(C2)),

λ⊗ C1 = exp(λ log(C1)) = Cλ
1

where C1 and C2 are two SPD matrices and λ is a scalar. When
the SPD matrix space is associated with the multiplication �,
it is actually a lie group [3], which may induce a bi-invariant
metric, i.e., Log-Euclidean metric in [3] (referred as LEM
here). Formally, the distance of two SPD matrices C1 and
C2 based on LEM can be written as

DIST(C1, C2) = ‖ log(C1)− log(C2)‖F

where ‖·‖F is the matrix Frobenius norm. With LEM, the SPD
matrix space is isomorphically and isometrically mapped to the
Euclidean space of symmetric matrices [3], which means many
calculations on Riemannian manifold can be simplified in the
Euclidean space. Specifically, we can calculate the interpolated
point on the geodesic path g(t) using matrix exponential and
logarithm as

C(t) = exp
(
(1− t) log(Cs) + t log(Ct )

)
. (3)

Therefore, to seek the geodesic path from the source domain
to the target domain, we first map the covariance matrices Cs

and Ct into the Log-Euclidean space with the matrix logarithm.
Given any 0 ≤ t ≤ 1, we then obtain the interpolated point
along the line between log(Cs) and log(Ct ) in the Euclidean
space. After that, we use matrix exponential to obtain the SPD
matrix on Riemannian manifold. The procedure is illustrated
in Fig. 3.

D. Performing Recognition with DASC

As shown in Fig. 3, we denote these interpolated covariance
matrices as Cj|nj=1, and also denote the covariance matrices
of the source domain and the target domain as C0 and Cn+1,
respectively. These n+2 covariance matrices actually represent

n + 2 intermediate domains that bridge the source domain and
the target domain.

To obtain the domain-invariant features, a common way is
to project the original features from the source/target domain
into those intermediate domains. To this end, we perform
principal component analysis (PCA) [4] on each covariance
matrix to obtain the projection matrix. Formally, we denote
Pj|n+1

j=0 ∈ R
D×d as the projection matrices obtained from those

n +2 covariance matrices using PCA. For any sample xi in the
source/target domain (i.e., xs

i or xt
i ), the projected feature by

using Pj can be computed by x̂ij = P′jxi. Then, we perform
LDA [4] using the labeled samples in each intermediate
domain to obtain the discriminative representation of each
sample, denoted by zij. The labeled data are from the source
domain (resp., both the source and the target domain) for
unsupervised DA (resp., semi-supervised DA). Finally, the n+2
features are concatenated to form the domain-invariant feature
by zi = [z′i0, . . . , z′i(n+1)]

′. After obtaining the domain-invariant
features for the samples in both domains, any type of classifier
(e.g., SVM classifier or NN classifier) can be employed to
perform the recognition task.

IV. MULTIPLE SOURCE DOMAIN ADAPTATION

In this section, we first introduce the problem of multiple
source DA, then we propose an SVM based method to learn
the target classifier as well as the weights of source domains.
Finally, we discuss the most related work with our proposed
method.

A. Problem

When multiple source domains are available, multiple
geodesic paths can be constructed on Remainnian mani-
fold by connecting each source domain with the target do-
main. Formally, given M source domains, Xs,1, Xs,2, . . . , Xs,M ,
we can obtain M pairs of domain-invariant features af-
ter performing feature extraction with our DASC method,
that is (Zs,1, Zt,1), (Zs,2, Zt,2), . . . , (Zs,M, Zt,M) where Zs,m =
[zs,m

1 , . . . , zs,m
Nm

] and Zt,m = [zt,m
1 , . . . , zt,m

Nt
] are the domain-

invariant features of the mth source domain data Xs,m and
the target domain data Xt generated from the mth geodesic
path, Nm and Nt are the numbers of source and target domain
samples. Note that the features from the same pair of source
and target domains (e.g. Zs,m and Zt,m) are homogenous,
because they are obtained by using the same projection matrix.
However, the features generated from different pathes (e.g.
Zs,m and Zs,m̂ for any m 
= m̂) are heterogeneous because
different projection matrices are used. A straightforward way
for multiple source domain adaptation is to independently
learn one classifier for each pair of source and target domains
and then fuse multiple classifiers in a late-fusion fashion.
However, some source domains might be more relevant to the
target domain, so the corresponding classifiers should be more
important for the final classification. To this end, we propose to
jointly learn multiple classifiers as well as the optimal weights
of source domains.
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B. Formulation

To simplify the notation, we denote {zm
i |Nm

i=1} as the samples
using the mth type of domain-invariant features, where Nm is
defined as Nm = Nm

l +Nu with Nm
l being the number of labeled

samples and Nu being the number of unlabeled samples. In
the task of unsupervised DA, the labeled samples come from
source domains and unlabeled samples are the target domain
data.

Given each type of domain-invariant features, we propose
to train one binary SVM classifier by using the labeled
samples from the source domain as well as the unlabeled
samples from the target domain. Formally, let us denote the
classifier for the mth type of features as f m(zm

i ) = w′mφm(zm
i )+

bm(i = 1, . . . , Nm), where φm(zm
i ) is the nonlinear feature

mapping function, wm and bm are the weight vector and the
bias of the SVM classifier, respectively. When learning those
M classifiers, we also propose to learn the weight coefficient
γm for each classifier f m(zm

i ). To this end, we formulate the
learning task as follows:

min
γ ,wm ,bm ,
f m ,ξm

i ,ξm∗
i

M∑
m=1

{
1

2γm
‖wm‖2 + C

Nm∑
i=1

(ξm
i + ξm∗

i ) (4)

+
θ

2
(‖f m

l − ym
l ‖2 + γm‖f m

u − vu‖2)

}
,

s.t. w′mφm(zm
i ) + bm − f m

i ≤ ε + ξm
i , ξm

i ≥ 0, (5)

f m
i − w′mφm(zm

i )− bm ≤ ε + ξm∗
i , ξm∗

i ≥0, (6)

1 ≥ γ ≥ 0 (7)

where these terms are described as follows:
1) γ = [γ1, . . . , γM]′: the vector of weight coefficients for

M classifiers;
2) ym

l = [ym
1 , . . . , ym

Nm
l

]′: the label vector of labeled samples
from the mth pair of source and target domains, with
ym

i ∈ {+1,−1} for i = 1, . . . , Nm
l ;

3) vu = [v1, . . . , vNu ]′: the virtual labels of unlabeled
samples in the target domain;

4) f m = [fm ′
l , fm ′

u ]′: the expected decision value vector for
the samples when using the mth type of features, where
f m
l = [ f m

1 , . . . , f m
Nm

l
]′ and f m

u = [ f m
Nm

l +1, . . . , f m
Nm

l +Nu
]′ are

the vectors for labeled and unlabeled samples, respec-
tively;

5) ξm
i and ξm∗

i : slack variables for ε-insensitive loss;
6) C and θ : two regularization parameters.
Specifically, the first term in (4) is to regularize the com-

plexity of the learned classifiers, which is similar to MKL.
The second term is the ε-insensitive loss which enforces the
decision values of learned classifiers (i.e., w′mφm(zm

i ) + bm) to
be close to the expected decision values (i.e., f m

i ). In the third
term, we constrain the expected decision values of labeled
data f m

l to as close to their labels ym
l as possible, and we also

introduce a data-dependent regularizer on the unlabeled data
to constrain the expected decision values on the target domain
unlabeled samples (i.e., f m

u ) and learn the optimal weights for
source domains (i.e. γ ).

1) Data-dependent Regularizer: The data-dependent regu-
larizer in the third term of (4) not only enforces the expected
decision values of unlabeled data from different classifiers

to be consistent with the virtual labels, but also encourages
the classifiers from relevant source domains to have higher
weights. Specifically, if the mth source domain is more rele-
vant to the target domain, then the expected decision values
(i.e., f m

u ) should be closer to the virtual labels of unlabeled
data vu . In this case, it will encourage the corresponding γm

to be larger. On the other hand, a larger γm will also enforce
the corresponding f m

u to be closer to vu .
2) Virtual Labels: To construct the virtual label vector

vu , we first train an SVM classifier for each pair of domains
separately, and use them to predict the decision values of
the unlabeled samples. Given an unlabeled sample x, let us
denote these M decision values by pm |Mm=1, then the virtual
label of x is calculated by using the weighted sum of these
M decision values, which is defined as

∑M
m=1 e− 1

δ
d2

m pm where
dm is the distance between x and the closest sample from
the mth source domain, the parameter δ is used to decide the
weights of local neighbors.

C. Optimization

We alternatingly optimize the weight coefficient vector γ
and other variables related to the classifier.

1) Fix γ : When fixing γ , the optimization problem in (4)
is separable with respect to m, m = 1, . . . , M. We therefore
optimize these M subproblems one by one. To simplify the
presentation, we omit the subscript m below unless necessary.

For each subproblem, we introduce the Lagrangian multi-
pliers αi’s and ηi’s (resp. α∗i ’s and η∗i ’s) for the constraints in
(5) (resp., (6)), and set the derivatives of the Lagrangian with
respect to the primal variables (f m, wm, bm, ξm

i and ξm∗
i ) to

zeros, respectively. Then, we obtain the following equations:

wm = γm�m(α∗ − α), (8)

f m =

(
ym

l
vu

)
+

(
INm

l
ONm

l ×Nu

ONu×Nm
l

1
γm

INu

)
α − α∗

θ
(9)

as well as the constraints: 1′α = 1′α∗, 0 ≤ α,α∗ ≤ C
where α = [α1, . . . , αNm ]′, α∗ = [α∗1 , . . . , α

∗
Nm ]′, and �m =

[φm(zm
1 ), . . . , φm(zm

Nm )].
Substituting those equations and constraints back into the

Lagrangian, we arrive at the following dual form:

min
α,α∗

1

2
(α − α∗)′K̃m(α − α∗) (10)

+ỹm ′(α − α∗) + ε1′(α + α∗)
s.t. 1′α = 1′α∗, 0 ≤ α,α∗ ≤ C (11)

where ỹm =

(
ym

l
vu

)
, K̃m = γmKm + 1

θ

(
INm

l
ONm

l ×Nu

ONu×Nm
l

1
γm

INu

)
and

Km = �′m�m is the kernel matrix using the mth type of
features. Actually, the above dual formulation is in analogous
to the support vector regression (SVR) formulation, and can
be readily solved with LIBSVM [32].

2) Fix f m, wm and bm: When each classifier is known,
γm |Mm=1 can be optimized as

min
γ

1

2

M∑
m=1

(
1

γm
‖wm‖2 + θγm‖f m

u − vu‖2

)
(12)

s.t. 1 ≥ γ ≥ 0.
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Algorithm 1: Multiple Source Domain Adaptation
Input: Source domain data Xs,m(m = 1, . . . , M) with the

corresponding label vector ym
l , and unlabeled target

domain data Xt .
1: Obtain M domain-invariant features
{zm

i , i = 1, . . . , Nm
l , . . . , Nm}, m = 1, . . . , M by using our

DASC method as described in Section III.
Training:

2: Generate the virtual label vector vu (Section IV-B);
3: Initialize t ← 1.
4: repeat
5: if t = 1 then
6: Set the weight coefficient vector γ ← 1/M.
7: else
8: Based on the learnt (αm,α∗m), calculate wm and

f m by using (8) and (9), respectively.
9: Solve for the weight coefficient vector γ as

γm = min{√‖wm‖2/(θ‖f m
u − vu‖2), 1} and

γ ← γ /(1′γ ).
10: end if
11: Obtain (αm,α∗m)|Mm=1 by solving M SVR problems

one by one as in (10) using LIBSVM [32].
12: Set t ← t + 1;
13: until The change of the objective in (4) is less than a

predefined threshold.
Testing:

14: Predict the labels of target domain samples by using
(13).

Output: The labels of target domain samples.

where wm and f m
u can be respectively calculated from (8) and

(9) by using the learnt dual variables (αm,α∗m).
The above problem is a convex optimization problem with

a box constraint. By setting the derivative with respect to γ
to zero and applying the box constraint, we reach the solution
as γm = min{√‖wm‖2/(θ‖f m

u − vu‖2), 1}, and then normalize
γ as γ ← γ

(1′γ ) .

D. Algorithm

We describe the whole algorithm for multiple source domain
adaptation in Algorithm 1. We first initialize the weight
coefficient vector to 1

M 1. Then, we solve the M SVR problems
one by one as in (10) to obtain the dual variables (αm,α∗m)|Mm=1.
After that, we can calculate wm and f m , respectively, using (8)
and (9), and obtain γ by solving (12). The weight coefficient
vector γ is further normalized as γ ← γ

1′γ . We repeat the
above two steps until the change of the objective value in (4)
is less than a predefined threshold. Actually, this algorithm
always converges in our experiments (see Section V-D for the
details).

Finally, the prediction of a target unlabeled sample x can
be obtained by fusing these M classifiers, that is

f (x)=
M∑

m=1

γm(φm(zm)′�m(α∗m − αm) + bm) (13)

where zm is the mth feature of x, and αm and α∗m are the learnt
dual variables from the mth subproblem in (10).

Fig. 4. Convergence characteristics of the objective function in (4) from
20 rounds of experiments with different randomly selected training samples.
The target domain is set to Caltech.

E. Discussion

The most related works are domain adaptation machine
(DAM) [7] and domain selection machine (DSM) [15] since
similar data-dependent regularizers were also used. Our
method is intrinsically different with [7] and [15]. Specifically,
both methods [7] and [15] are designed for homogenous
sources, while our method aims to handle heterogeneous
sources. Only one type of feature for unlabeled target data
is considered in their regularizers [7], [15]. In contrast, we
consider different types of features for unlabeled target data
in our data-dependent regularizer. Moreover, the source classi-
fiers in DAM and DSM are prelearnt. In contrast, we also learn
the source classifiers for different sources to better cope with
heterogeneous sources. Recently, the work in [36] studied the
same domain adaptation setting, where the samples from dif-
ferent source domains may be represented by different types of
features while the samples in the target domain have all types
of features. However, their work [36] needs to infer the labels
of target domain samples, which is computationally expensive.
In contrast, we use the data-dependent regularizer to utilize the
unlabeled target domain samples without inferring their labels,
thus our work is more efficient.

V. EXPERIMENTS

In this section, we evaluate our methods on two unsu-
pervised domain adaptation settings: single source domain
adaptation and multiple source domain adaptation.

A. Experimental Setup

For single source domain adaptation, we strictly follow the
experimental setting in [2] by using four datasets with ten
common classes, i.e., Amazon, Webcam, and DSLR collected
in [5], and Caltech-256 [6]. Similar to [1], [2], and [5],
we extract SURF features [33] and encode the images with
800-bin token frequency (TF) feature by using a codebook
trained from a subset of Amazon images. Then, the features are
normalized and z-scored to have zero mean and unit standard
deviation in each dimension.
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TABLE I

MEANS AND STANDARD DEVIATIONS OF CLASSIFICATION ACCURACIES (%) FOR UNSUPERVISED SINGLE SOURCE DOMAIN ADAPTATION. FIRST SIX

CASES (A: AMAZON, C: CALTECH, D: DSLR, W: WEBCAM)

TABLE II

MEANS AND STANDARD DEVIATIONS OF CLASSIFICATION ACCURACIES (%) FOR UNSUPERVISED SINGLE SOURCE

DOMAIN ADAPTATION. REMAINING SIX CASES

We treat each dataset as one domain, and perform the
unsupervised domain adaptation task using each pair of do-
mains, so in total we have 12 cases. Twenty labeled samples
(resp., eight labeled samples) per class are selected randomly
as training data when using Amazon, Webcam, and Caltech
(resp., DSLR), as the source domain. All the samples are used
as unlabeled training data when the dataset is used as the target
domain. The test data is as the same as the unlabeled training
data as in [1] and [2].

To validate the proposed learning method for multi-
ple source domain adaptation, we additionally use Ima-
geNet [34] and collect another dataset called Google-Image
which contains the top ranked 100 images returned from
Google-Image search engine by using the class name as the
query. We perform the unsupervised multiple source domain
adaptation task by leaving one dataset out as the target domain
and using the rest datasets as five source domains. Due to the
lack of label information on Google-Image dataset, we only
use it as the source domain. For ImageNet, 20 labeled images
per class are selected as training samples when it is used as
one of the source domains. For other datasets, we use the same
settings as in the single source domain adaptation task.

For all the settings, we perform 20 rounds of experiments
with different randomly selected samples. We empirically set
the number of intermediate covariance matrices to n = 8 as
suggested in [1], and fix the feature dimension as d = 30
after using PCA, which results in 300-dim domain-invariant
features. For LDA, we set the feature dimension to the class
number minus one as in [4]. RBF kernel is used in SVM by
setting the bandwidth parameter as the mean distance and we
use the default tradeoff parameter (i.e. C = 1). In multiple
source DA, the tradeoff parameter θ is set to 1. We set the
bandwidth parameter δ to 100, when calculating the virtual
labels, and we observer the performance is stable when δ is
in the ranges of [10, 1000].

B. Results for Single Source Domain Adaptation

We compare our DASC with four baselines. OrigFeat,
SGF [1], GFK [2], and information theoretical learning
(ITL) [10], where OrigFeat uses the original TF features,
SGF and its extended version GFK are the most relevant
methods in which the subspaces are exploited, and ITL is a
recently proposed unsupervised DA method. Specifically, in
SGF [1], PCA is used to compute the subspaces for source
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Fig. 5. Mean accuracies of different methods with respect to the feature/subspace dimension d. (a) C→A. (b) C→W. (c) C→D. (d) A→C. (e) A→W.
(f) A→D. (g) W→C. (h) W→A. (i) W→D. (j) D→C. (k) D→A. (l) D→W.

and target domains and then partial least squares (PLS) [35] is
used to generate the discriminative features after interpolating
intermediate subspaces, which is referred as SGF(PLS) here.
In GFK [2], PCA is used to generate the subspace for the
target domain while PCA and PLS are employed for the
source domain, which are referred as GFK (PCA, PCA) and
GFK (PLS, PCA) here, respectively. For our DASC, we em-
ploy PCA on the intermediate covariance matrices to obtain the
projection matrices and then apply LDA to obtain the discrimi-
native features, therefore we refer to it as DASC (PCA+LDA).
To fairly compare with SGF and GFK, we additionally report
SGF (PCA+LDA) which follows our method to use LDA for
extracting the discriminative features and GFK (LDA, PCA)
in which LDA is used to obtain the subspace for the source
domain. Moreover, we also report the results only using PCA
for SGF and our DASC, which are referred as SGF (PCA)
and DASC (PCA), respectively.

Following [1], [2], and [10], we report the performances
using the NN classifier for the above settings. For ITL, we
strictly follow the validation scheme in [10] to select the best
parameters. For SGF, we also strictly follow their parameter
settings and report their best results by selecting the best
subspace dimension d according to the average accuracy over
all the 12 cases. For GFK, we also follow their parameter
settings, and the subspace dimension d is determined by
using the RoD criterion as in [2]. Moreover, we also report
the results using the SVM classifier. We do not apply LDA
for our DASC and other methods since label information
can be exploited in SVM. But we still report the results
for SGF and GFK when using PLS for dimension reduction
or computing the subspace. Tables I and II summarize the

mean accuracies and standard errors for all the 12 cases, and
we also report the average accuracy over all cases for each
method in Table II (see the last column).

We first consider the NN classifier using PCA only in which
we do not use any label information when generating the fea-
tures. Compared with OrigFeat, SGF (PCA), and GFK (PCA,
PCA), our DASC (PCA) achieves the best results in 10 out of
12 cases, which indicates our domain-invariant features can
better handle domain difference when compared with them.
It also implies that it is better to reduce the data distribution
mismatch by directly coping with the covariance matrix rather
than using the subspace as in SGF and GFK (see the detailed
discussion in Section III-B). We also note that DASC (PCA)
generally achieves better results than ITL, which indicates it
is better to shift covariance for domain adaptation rather than
to use the information theory criterion as in ITL [10].

In general, domain adaptation methods are better than
OrigFeat by using either NN or SVM classifier. When
compared with other methods, our proposed method DASC
(PCA+LDA) (resp. DASC) is the best in 9 (resp. 10) out of
the 12 cases when using the NN (resp. SVM) classifier, and
is comparable with other methods in the rest cases. In term
of the average accuracy, our method is better than the second
best result by 2.14% (resp. 1.45%) when using the NN (resp.
SVM) classifier.

C. Results for Multiple Source Domain Adaptation

For multiple source unsupervised domain adaptation, we
also compare our method with SGF [1] and GFK [2] as well as
several state-of-the-art multiple source DA methods including
multi-KMM [24], conditional probability-based multi-source
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TABLE III

MEAN ACCURACIES (%) FOR UNSUPERVISED MULTIPLE SOURCE

DOMAIN ADAPTATION

domain adaptation (CP-MDA) [25], DAM [7], and DSM [15].
The original TF features are used for [7], [15], [24], and [25]
since all these methods are designed for homogenous source
domains. We additionally compare two commonly used SVM
baselines, SVM (single best) which is the best among all the
SVMs trained on each source domain and SVM (fusion) which
equally fuses the decision values from all the SVMs trained
on different source domains. For SGF and GFK, we strictly
follow their approaches in [1] and [2] for multiple source
domain adaptation except using the SVM classifier to replace
the NN classifier. For these baseline methods, we either use
the recommended parameters in their papers or select the best
ones according to the test results.

We report the mean accuracies in Table III. SVM (single
best) generally performs better than SVM(fusion), which
indicates it is necessary to select relevant source domains
for multiple source domain adaptation. The proposed method
achieves the best performances in four out of five cases. Even
for the remaining one our method still achieves the second
best result and the performance is also comparable with
the best result. These results demonstrate the effectiveness
of our domain-invariant features similarly as in the single
source DA task. Moreover, the results also demonstrate our
proposed learning method can effectively integrate different
heterogeneous domain-invariant features and thus it achieves
much better performance compared with other multiple
source domain adaptation methods.

D. Convergence
We study the convergence of our multiple source domain

adaptation algorithm as described in Algorithm 1. Fig. 4 shows
the objective values of 20 rounds of experiments with different
randomly selected training samples when using Caltech as
the target domain. We can observe that our algorithm usu-
ally converges after 30∼50 iterations. We also have similar
observations in other cases.

E. Covariance Versus Subspace
We have discussed the advantages of using the covariance

matrix on a Riemannian manifold when compared with using
the subspace on a Grassmann manifold in Section III-B. SGF
and GFK cannot bridge the data distribution mismatch in the
common subspace of two domains. In contrast, our DASC does
not suffer from such a problem because we directly cope with
the covariance matrices for domain adaptation without the aid
of subspaces. Fig. 5 shows the performance comparison of
our DASC with SGF and GFK for the single source domain

adaptation task using PCA and NN classifier.2 Our DASC
is generally better than SGF and GFK in most cases when
using different d’s (i.e., the dimension of subspaces for SGF
and GFK and the feature dimension after using PCA for
our DASC), which clearly demonstrates the effectiveness of
our method.

VI. CONCLUSION

In this paper, we have proposed an effective method to gen-
erate domain-invariant features for unsupervised domain adap-
tation. Different from the existed methods such as SGF and
GFK, which adopted the subspace assumption on a Grassmann
manifold, we directly use the covariance matrix to represent a
domain and construct a geodesic path between the source and
target domains on a Riemannian manifold. Then, we extract
domain-invariant features by projecting the samples onto the
intermediate domains along the geodesic path. For the mul-
tiple source domain adaptation task, as the domain-invariant
features from each pair of source and target domains may be
different, we further propose a new SVM-based approach to
simultaneously learn the target classifier as well as the optimal
weights for multiple source domains. Extensive experimental
results clearly demonstrate the effectiveness of our work.
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