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Abstract—It is often expensive and time consuming to collect labeled training samples in many real-world applications. To reduce

human effort on annotating training samples, many machine learning techniques (e.g., semi-supervised learning (SSL), multi-instance

learning (MIL), etc.) have been studied to exploit weakly labeled training samples. Meanwhile, when the training data is represented

with multiple types of features, many multi-view learning methods have shown that classifiers trained on different views can help each

other to better utilize the unlabeled training samples for the SSL task. In this paper, we study a new learning problem called multi-view

weakly labeled learning, in which we aim to develop a unified approach to learn robust classifiers by effectively utilizing different types

of weakly labeled multi-view data from a broad range of tasks including SSL, MIL and relative outlier detection (ROD). We propose an

effective approach called co-labeling to solve the multi-view weakly labeled learning problem. Specifically, we model the learning

problem on each view as a weakly labeled learning problem, which aims to learn an optimal classifier from a set of pseudo-label vectors

generated by using the classifiers trained from other views. Unlike traditional co-training approaches using a single pseudo-label vector

for training each classifier, our co-labeling approach explores different strategies to utilize the predictions from different views, biases

and iterations for generating the pseudo-label vectors, making our approach more robust for real-world applications. Moreover, to

further improve the weakly labeled learning on each view, we also exploit the inherent group structure in the pseudo-label vectors

generated from different strategies, which leads to a new multi-layer multiple kernel learning problem. Promising results for text-based

image retrieval on the NUS-WIDE dataset as well as news classification and text categorization on several real-world multi-view

datasets clearly demonstrate that our proposed co-labeling approach achieves state-of-the-art performance for various multi-view

weakly labeled learning problems including multi-view SSL, multi-view MIL and multi-view ROD.

Index Terms—Multi-view learning, multi-instance learning, semi-supervised learning, relative outlier detection, weakly labeled learning

Ç

1 INTRODUCTION

IN many real-world applications, it is often expensive and
time consuming to collect labeled training samples. In

recent decades, researchers have been exploiting various
learning scenarios for utilizing weakly labeled samples to
reduce human effort on manually labeling the training sam-
ples. For example, in semi-supervised learning (SSL) [1], [2],
the training data consists of a limited number of labeled
training samples and a large number of unlabeled training
samples. Similarly, in multi-instance learning (MIL) [3], [4],
[5], [6], the training data is provided in the form of bags.
Only the label of each bag is known, while the labels of
instances in each bag remain unknown. In recent work [7],
training data with uncertain labels was referred to as
weakly labeled data, and those learning problems were uni-
formly referred to as the weakly labeled learning problem.
A unified approach was proposed in [7] for solving various

learning problems with weakly labeled data including SSL,
MIL and clustering, in which they learnt an optimal classi-
fier from all possible labelings of training data. However,
their work [7] focused on single-view training data.

When training data is represented with multiple feature
representations, researchers have developed many multi-
view learning approaches to improve performance by utiliz-
ing information from different views [8], [9], [10], [11], [12],
[13], [14], [15], [16], [17]. Most of those works (e.g., co-train-
ing [8]) in multi-view learning were proposed for the multi-
view SSL scenario. It has been shown that, with multi-view
information, the classifiers trained on different views can
effectively help each other to better utilize the unlabeled
training data. Nevertheless, those works were designed for
SSL, and it is unclear how to extend them to the more gen-
eral weakly labeled learning problem.

In this paper, we study the learning problem by using
weakly labeled training data with multiple views, which is
referred to as the multi-view weakly labeled learning problem.
We aim to develop a unified approach to learn robust classi-
fiers by effectively utilizing different types of weakly labeled
training data with multiple views of features from a broad
range of applications including the traditional multi-view SSL
problem as well as the multi-view MIL and multi-view Rela-
tive Outlier Diction (ROD) problems. Specifically, we propose
a novel co-labeling approach for multi-view weakly labeled
learning, in which we consider two major challenges: how to
effectively exchange information among different views, and
how to effectively learn a robust classifier on each view.

To tackle the first challenge,we use pseudo-label vectors to
pass information among different views similar to co-training
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based methods. In co-training based methods [8], [9], [17],
[18], [19], the predictions from a classifier trained on one view
are used to label the unlabeled samples for training the classi-
fier on the other view. To handlemore general weakly labeled
learning scenarios including SSL, MIL and ROD, in our co-
labeling approach, we first propose a projection operator,
which converts the predictions (i.e., the decision values) to
pseudo-label vectors by considering different constraints on
weakly labeled data from different learning scenarios. More-
over, considering that a single pseudo-label vector in the co-
training based approach may be sensitive to the threshold,
we further propose different strategies to generate multiple
pseudo-label vectors by using different biases to enhance the
robustness of our co-labeling approach.

To learn the classifier for each view, traditional co-training
based methods used supervised learning approaches by
treating single pseudo-label vector as the ground-truth label
vector, which may be sensitive to the noise in the pseudo-
label vector. In Section 3, we formulate the learning problem
on each view as a weakly labeled learning problem [20], [21],
in which we learn an optimal classifier from a set of pseudo-
label vectors and the combination of these pseudo-label
vectors to the final classifier is automatically decided by the
multiple kernel learning (MKL) method. Specifically, as dis-
cussed in Section 4, those pseudo-label vectors can be gener-
ated from the classifiers on other views, with different biases
and from all previous iterations. Inspired by recent works [2],
[5], [7], [22], in Section 5 we formulate this learning problem
as the MKL problem [23], [24], in which each base kernel is
associated with a pseudo-label vector. Moreover, by observ-
ing that these pseudo-label vectors are generated with differ-
ent strategies, we further develop a novel multi-layer MKL
method to effectively utilize the intrinsic group structure on
those base kernels. An efficient alternating optimization algo-
rithm is proposed to solve the newmulti-layerMKL problem
by using a recursive updating strategy for updating the ker-
nel combination coefficients.

In Section 6, we conduct extensive experiments for differ-
ent weakly labeled learning scenarios including multi-view
SSL, multi-view MIL, and multi-view ROD, and also pro-
vide a detailed experimental analysis. The experimental
results clearly demonstrate that our co-labeling approach for
multi-view weakly labeled learning is not only better than
the existing multi-view learning methods but also outper-
forms the recent weakly labeled learning work [7] as well as
the related state-of-the-art methods for SSL, MIL or ROD.

Beyond our preliminary work [20], in this paper, we
additionally propose a novel multi-layer MKL method to
learn a more robust classifier on each view.

2 RELATED WORK

Our work is related to traditional multi-view learning
approaches. Most traditional multi-view learning methods
were proposed for SSL. One of the pioneering works is the
co-training method [8], which was originally proposed for
semi-supervised learning problems with two views of
training data. It was further extended to co-EM [9], in
which they label all the unlabeled data at each iteration
without considering confidence. It was also extended by
using SVMs as the base classifiers in [17]. Co-training was

also extended to tri-training [18] and co-forest [19] to han-
dle more than two views. However, the co-training style
algorithms work under strict assumptions that each view
is sufficient to train a low-error classifier and both views
are conditionally independent, which might not be satis-
fied on real world datasets [25]. Many works attempted to
relax those assumptions from various perspectives, such
as weak dependence [26], a-expansion [27], large diver-
sity [25] and label propagation [28]. Recently, co-training
with insufficient views has also been theoretically ana-
lyzed in [29].

Besides co-training style methods, other methods such
as co-regularization based approaches [10], [11], [12], [13]
were also proposed to train classifiers on different views
based on the so-called co-regularization criterion, which is
used to minimize the differences of decision values from
the classifiers on different views. The similar idea has also
been employed in multi-view clustering [14], [15]. How-
ever, similar to co-training style methods, all these methods
are specifically designed for a specific learning scenario,
thus they cannot be directly applied to handle general
multi-view weakly labeled data.

Our work is also related to various learning scenarios
with different types of weakly labeled training data. Specifi-
cally, besides the above mentioned multi-view SSL works,
SSL methods have also been widely studied for single view
training data [1], [2]. A comprehensive survey on SSL can
be found in [30]. MIL is another widely studied learning
scenario, in which the weakly labeled training data is pro-
vided in the form of bags of instances. Only the labels of
training bags are given, while the labels of instances inside
each training bag are unknown. Many works have been pro-
posed to solve the MIL problems in the literature [3], [4], [5],
[6], [31], and a survey on MIL can be found in [32]. Another
example is maximum margin clustering (MMC) [22], [33],
in which the goal is to learn a discriminative classifier to
partition unlabeled training samples into two disjoint clus-
ters. Recent work [7] uniformly referred to the above learn-
ing scenarios as weakly labeled learning, and proposed a
unified scheme called WellSVM to solve it. Another work
that can handle different types of weakly labeled data was
also proposed in [34]. Other learning scenarios related to
weakly labeled data include relative outlier detection
(ROD) [35], [36], [37] and multi-instance semi-supervised
learning (MISSL) [38]. However, all those works were pro-
posed for only single-view training data. In contrast, in this
work, we study a new learning problem called multi-view
weakly labeled learning, in which we further explore the
multi-view information of different types of weakly labeled
training data to learn more robust classifiers, and our pro-
posed co-labeling approach is applicable for not only multi-
view SSL, but also other tasks such as multi-view MIL and
multi-view ROD.

3 CO-LABELING FOR MULTI-VIEW WEAKLY

LABELED LEARNING

In this section, we first review the existing works on multi-
view learning and weakly labeled learning, and then pres-
ent our co-labeling approach for the multi-view weakly
labeled learning problem.
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3.1 Co-Training

In multi-view learning, the training data is represented with
multiple views of features. Typically, a classifier fv (e.g., an
SVM classifier) is trained on the vth view and the final clas-
sifier is obtained by fusing the classifiers from all views, i.e.,
~fðxÞ ¼ 1

V

PV
v¼1 f

vðxvÞ.
Co-training [8] was originally proposed for the SSL prob-

lem with two views. The basic idea of co-training is to itera-
tively add some pseudo-labeled samples into the pool of
labeled training samples to re-train the classifiers on both
views. The pseudo-labeled samples are selected from the
pool of unlabeled training samples, and are labeled by at
least one classifier which has a confident prediction. Finally,
the classifiers from different views are fused to perform the
classification.

While the original co-training algorithm feeds newly
labeled training samples to each view, it can also be deemed
as a learning process by iteratively updating the pseudo-
labels of unlabeled data on each view [16]. We illustrate the
co-training method in Fig. 1a. At each iteration, the classifier
on one view (e.g., f1 or f2) generates pseudo-label vectors

for learning the classifier on the other view (e.g., f2 or f1) by
using the supervised learning approach.

3.2 Weakly Labeled Learning

To reduce human effort for labeling training data, various
learning scenarios have been proposed in the literature
to learn classifiers only based on weakly labeled data. For
example, in SSL, one is given a limited number of labeled
samples and a large amount of unlabeled samples. In MIL,
the training data are given in the form of training bags, with
each bag containing a certain number of training instances.
While the label of each bag is given, the labels of instances
inside each bag remain unknown.

Recently, the work in [7] studied the weakly labeled
learning problem by unifying the above learning scenarios
into a general learning problem with weakly labeled data.
The weakly labeled learning problem is formulated as the
following optimization problem [7]:

min
f;y2Y

kfk2 þ C‘ðf; yÞ; (1)

where Y is the so-called label candidate set, f is the target clas-
sifier, and ‘ð�Þ is the loss function. The label candidate set Y
contains all the possible labelings of the training samples.
Intuitively, the weakly labeled learning problem aims to
learn an optimal classifier from all the possible labelings.

By defining different constraints on the label candidate set
Y, the weakly labeled learning problem in (1) unifies various
traditional learning scenarios with different weakly labeled

data. Let us denote the label vector as y ¼ ½y1; . . . ; yn�0 where
yi 2 fþ1;�1g is the possible label for xi and n is the number
of training samples. We give several examples of the defini-
tion on the label candidate set Y corresponding to different
traditional learning scenarios includingMIL, SSL and ROD.

In MIL, the constraints are that all instances in the nega-
tive bags are negative, and at least one instance (or a portion
of the instances) in each positive bag is positive [3], [5]. Let us
denoteBI as the Ith training bag and YI as the corresponding
bag label. Then we can represent the label candidate set as
Y ¼ fyjPi:xi2BI ðyi þ 1Þ=2 � "; if YI ¼ 1; yi ¼ �1; if YI ¼ �1g,
where we have " ¼ 1 for the traditional MIL constraint [3],
and " ¼ mjBI j for the general MIL constraint [5] with m being
the portion parameter and j � j being the cardinality function.

In SSL [1], the training data is composed of nl labeled
samples and a large number of unlabeled samples. Usually,
the unlabeled samples are required to satisfy a balance con-
straint. Then the label candidate set can be represented as
Y ¼ fyjyi ¼ gi; i ¼ 1; . . . ; nl;

Pn
i¼nlþ1ðyi þ 1Þ=2 ¼ sðn� nlÞg,

where gi is the ground truth label of xi, and s is the parame-
ter for the balance constraint.

In ROD [36], the training data consist of nl normal pat-
terns and n� nl unlabeled samples. If we denote the label
for the normal pattern and the outlier as 1 and �1, respec-
tively, the label candidate set can be represented as
Y ¼ fyjyi ¼ 1; i ¼ 1; . . . ; nl;

Pn
i¼nlþ1ðyi þ 1Þ=2 ¼ ðn� nlÞð1�

kÞg, where k is a parameter on the ratio of outliers. The label
candidate set for other learning scenarios such as maximum
margin clustering [22] can also be similarly defined.

3.3 Multi-View Weakly Labeled Learning

We observe that most traditional multi-view learning
approaches are limited to semi-supervised learning, and the
recently proposed weakly labeled learning works for semi-
supervised learning and multi-instance learning are limited
to single-view training data. In practice, traditional multi-
view learning methods can benefit from the recent progress
on weakly labeled learning, and weakly labeled learning
methods can also be improved with multi-view information.
Based on these observations and motivations, in this paper
we propose to study a new learning problem called multi-
viewweakly labeled learningwhich aims to solve theweakly
labeled learning problemwithmulti-view training data.

Specifically, we focus on the binary classification prob-
lem in this work. The multi-class classification problem can
be converted into a set of binary classification problems
using the one-versus-all strategy. Inspired by the work on
co-training and weakly labeled learning, we formulate the
multi-view weakly labeled learning problem as follows:

min
fv;yv2Cv

XV
v¼1
kfvk2 þ C‘ðfv; yvÞ; (2)

Fig. 1. Comparison between co-training and our co-labeling.
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where yv is the pseudo-label vector for the training samples
on the vth view, Cv is the set of possible pseudo-label vectors
for the vth view generated by using the predictions from
other views. Similar to co-training, those V classifiers in (2)
are not individually learnt. Specifically, we use the classifier
trained on one view to help the training processes on the
other views through the pseudo-label vector sets (see the
details below). Finally those V classifiers are equally fused
for prediction as in co-training.

Algorithm 1. The Co-Labeling Algorithm

1: Initialize the pseudo-label vector set Cv for each view.
2: repeat
3: Train a classifier fv based on Cv by solving a weakly

labeled learning problem for each view (see Section 5).
4: Obtain the predictions zv of training samples using fv for

each view.
5: Update the pseudo-label vector set Cv using zj’s (j 6¼ v).
6: until The stopping criterion is reached.
7: return fv’s.

To solve the multi-view weakly labeled learning problem
in (2), we propose a novel approach called “co-labeling” by
tackling two major challenges: how to effectively use the
classifier trained on one view to help the training processes
on other views, and how to improve weakly labeled learn-
ing on each view for training a more robust classifier.

We use the pseudo-label vector set Cv to exchange informa-
tion from the classifier trained on one view to another. Specifi-
cally, similar to co-training, in our co-labeling approach the
pseudo-label vector set Cv is generated by using the predic-
tions from classifiers trained on the other views. To cope with
different weakly labeled data, we first propose a projection
operator, which converts the predictions (i.e., the decision val-
ues) to pseudo-label vectors by considering the constraints
associated with different weakly labeled learning scenarios.
Moreover, in the traditional co-training methods, the classi-
fiers exchange information through a single pseudo-label vec-
tor. In contrast, we use a set of pseudo-label vectors in (2),
which contain more information for learning a robust classi-
fier. Those pseudo-label vectors can be generated from differ-
ent views, biases and iterations (see Section 4 for details).

To learn a classifier on each view, the traditional co-
training algorithm adopted the supervised learning method
by using single pseudo-label vector as the ground-truth of
unlabeled data, which may be sensitive to noise in the
pseudo-label vector. To overcome this problem, in our co-
labeling approach, we treat the learning problem on each
view as a weakly labeled learning problem, by learning
an optimal classifier from a set of pseudo-label vectors
(see Fig. 1). Moreover, to improve weakly labeled learning
on each view, we further exploit the group structure within
the pseudo-label vectors, which leads to a novel multi-layer
MKL problem (see Section 5).

We list our co-labeling algorithm in Algorithm 1, in which
we iteratively update the set of pseudo-label vectors and
train a classifier on each view by solving a weakly labeled
learning problem. The details of generating the pseudo-label
vector set Cv for each view are introduced in Section 4, and
the multi-layer MKL model for solving the weakly labeled
learning problem on each view is presented in Section 5.

4 GENERATE THE PSEUDO-LABEL VECTOR SET

How to generate a set of pseudo-label vectors on one view
using the information from the other views is the first key
issue of our co-labeling approach. Inspired by co-training [8],
we generate the pseudo-label vectors on one view by using
the predictions (i.e., decision values) from the classifiers on
other views. Unlike the co-training method, which uses only
a single pseudo-label vector, we need to consider several
issues as described below to better handle the general multi-
view weakly labeled learning scenarios and train a more
robust classifier.

4.1 Handling General Weakly Labeled Constraints

Let us denote the prediction from the classifier of the vth

view fv as z ¼ ½z1; . . . ; zn�0, where zi is the decision value of
the ith training sample. To cope with general weakly
labeled learning scenarios, we need to define a projection
operator y ¼ pðzÞ, which converts each prediction z to
a pseudo-label vector y by considering the constraints asso-
ciated with different weakly labeled learning scenarios.
Formally, the projection operator can be defined as follows:

pðzÞ ¼ argmin
y2Y

ky� zk; (3)

where k � k is the ‘2-norm.
We solve the above problem as follows. For training sam-

ples with known labels (e.g., the labeled samples in SSL and
ROD as well as the instances in negative bags in MIL), we
directly assign their ground-truth labels. For the weakly
labeled samples, we use the thresholding function to con-
vert their decision values into binary values (i.e., þ1 or �1)
as discussed below.

In MIL, the instances in each positive bag should satisfy
the constraint

P
i:xi2BI ðyi þ 1Þ=2 � " (see Section 3.2). To

solve Eq. (3), we first sort the instances in each positive bag
based on their decision values in descending order, and
obtain the pseudo-label vector y according to the sign of
decision values (i.e., the threshold is set to zero). If the label-
ing for any positive bag does not satisfy the bag constraint,
we then assign the top � instances to be positive.

In SSL, the unlabeled samples are associated with a bal-
ance constraint

Pn
i¼nlþ1ðyi þ 1Þ=2 ¼ sðn� nlÞ (see Sec-

tion 3.2). So we sort these unlabeled samples based on their
decision values in descending order, and adjust the thresh-
old to assign the first sðn� nlÞ samples to be positive and
the remaining ones to be negative. The samemethod can also
be used for the unlabeled training samples in the ROD task.
We can also similarly employ the projection operator for
other weakly labeled training data with linear constraints.

4.2 Handling the Bias

Moreover, the learnt classifiers in the weakly labeled learn-
ing problems can be easily biased. For example, in MIL one
common approach is to initialize all the instances in posi-
tive bags as positive samples, so it is more likely that the
initial classifier will predict the negative samples to be pos-
itive. A possible solution is to adjust the bias term of the
learnt classifier. However, it is a nontrivial task since we
do not have the ground truth labels to decide the adjust-
ment. Considering the learnt classifiers actually rely on the

1116 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 38, NO. 6, JUNE 2016



pseudo-label vectors, we propose to perturb the predic-
tions to obtain multiple pseudo-label vectors, and learn the
optimal bias by using the MKL method (see Section 5) in
the training process, as motivated by the recent work on
domain adaptation [39].

Formally, for MIL, given any prediction z, we can obtain

a set of perturbed predictions as f~zsjSs¼1g by using different
predefined biases, i.e., ~zs ¼ zþ bs, where S is the number of
biases and bs 2 R is a bias term to adjust the predictions.
After that, we generate a set of pseudo-label vectors using
the projection operator defined as in (3) on these perturbed
predictions. In our experiments, we empirically set bs in the
range of [�0.5, �0.3] with an interval of 0:1.

Similarly, the learnt classifier can be easily biased due to
the limited number of labeled training samples in SSL.
Moreover, the parameter s ¼ s0 in the balance constraint is
usually estimated from a limited number of labeled sam-
ples, where s0 is the ratio of positive training samples over
all labeled training samples [1]. The estimation may also be
inaccurate, so we propose to use different constraints by
perturbing s in SSL, which is similar to that we perturb the
bias term in MIL. Specifically, we change the balance con-
straint in (3) by setting s ¼ s0 þ ss, where ss is a predefined
perturbation term. After that, we generate a set of pseudo-
label vectors using the projection operator defined as in (3)
with different constraints decided by ss’s. In our experi-
ments, we empirically set ss in the range of ½�0:1;þ0:1�
with an interval of 0:02. We use the same method to set
k ¼ k0 þ ks for the ROD task, where ks is also in the range of
½�0:1;þ0:1� with an interval of 0:02. We only have the nor-
mal samples for the ROD task, but k0 can still be decided
according to our prior knowledge.

4.3 Combining the Pseudo-Label Vector Set from
Previous Iterations

Thus far, we only consider the pseudo-label vectors
obtained by using the predictions from the latest iteration,
which means the pseudo-label vector set on each view can
be changed at different iterations. As a result, one potential
problem is that the algorithm may not converge.

Inspired by the recent weakly labeled learning works [2],
[7], [22], we construct the pseudo-label vector set by using
the pseudo-label vectors obtained from all previous itera-
tions. In other words, at each iteration we augment the
pseudo-label vector set by appending the newly obtained
pseudo-label vectors into the previous pseudo-label vector
set. Thus, our algorithm can converge (see Section 5.4 for
more detailed discussions).

4.4 Summary and Discussion

We illustrate the entire process for generating the pseudo-
label vectors in Algorithm 2. For MIL, we first perturb the
prediction zv;t at the tth iteration from the vth view with S
predefined biases and obtain a set of perturbed predictions

f~zv;s;tjSs¼1g. Then, we use the projection operator to convert
each ~zv;s;t to a pseudo-label vector yv;s;t. For SSL and ROD, we

obtain S perturbed constraints and then project the prediction
into the pseudo-label vector based on each constraint. By

defining Ov;t ¼ fyv;s;tjSs¼1g as the pseudo-label vectors

generated from the vth classifier at the tth iteration, the
pseudo-label vector set for training the classifier on the vth
view at the next iteration can be obtained by combining the
pseudo-label vectors from all the other views, different biases

and all the previous iterations, i.e., Cvtþ1 ¼ Cvt
S fOj;tjVj¼1;j6¼vg.

Therefore, at the tth iteration, in total we have
ðV � 1Þ � S � t pseudo-label vectors for the vth view, where
V is the number of views, S is the number of biases.

Algorithm 2. Algorithm for Generating Pseudo-label
Vectors

Input: The current pseudo-label vector set Cvt , and the decision
values from the classifiers on different views at the tth
iteration zv;t, for v ¼ 1; . . . ; V .

1: for v ¼ 1; . . . ; V do
2: for s ¼ 1; . . . ; S do
3: For MIL, obtain the perturbed prediction with the sth

bias: ~zv;s;t ¼ zv;t þ bs, and project the perturbed pre-
diction into the pseudo-label vector: yv;s;t ¼ pð~zv;s;tÞ.

4: For SSL (resp., ROD), obtain the perturbed constraint by
setting s ¼ s0 þ ss (resp., k ¼ k0 þ ks), and project the
prediction into the pseudo-label vector based on the
sth constraint: yv;s;t ¼ pðzv;tÞ.

5: end for
6: Ov;t ¼ fyv;s;tjSs¼1g
7: end for
8: for v ¼ 1; . . . ; V do
9: Obtain the pseudo-label vector set on the vth view:

Cvtþ1 ¼ Cvt
S fOj;tjVj¼1;j 6¼vg

10: end for
Output: The pseudo-label vector set on each view: Cvtþ1 for

v ¼ 1; . . . ; V .

5 MULTI-LAYER MULTIPLE KERNEL LEARNING

After generating a pseudo-label vector set for each view, the
remaining problem is to learn a robust classifier using
the pseudo-label vector set. In this section, we formulate
the weakly labeled learning problem on each view as an
MKL problem by combining each pseudo-label vector
with the input kernel. To train a more robust classifier, we
further employ the intrinsic group structure inside the
pseudo-label vector set, which leads to a novel multi-layer
MKL formulation.

5.1 Weakly Labeled Learning via ‘1-MKL

In supervised learning, one can learn a classifier based on
regularized empirical risk minimization. Specifically, con-
sidering a max-margin classifier fðxÞ ¼ w0fðxÞ þ b with fð�Þ
being the feature mapping function and b being the bias,
and r-SVM with the squared hinge loss, one can formulate
an optimization problem for supervised learning as follows:

min
w;b;r;�i

1

2
kwk2 þ b2 þ C

Xn
i¼1

�2i

 !
� r;

s:t: giðw0fðxiÞ þ bÞ � r� �i; i ¼ 1; . . . ; n;

(4)

where C is a tradeoff parameter, gi is the given label of the
ith training sample xi and n is the number of training
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samples. By introducing the dual variable aa ¼ ½a1; . . . ;an�0
for the constraints in (4), one can write its dual form as:

max
aa2A
�aa0aa

2C
� 1

2
aa0ðK� gg0Þaa; (5)

where K ¼ K̂þ 110, K̂ ¼ ½kðxi; xjÞ� ¼ ½fðxiÞ0fðxjÞ� is the input
kernel matrix, g ¼ ½g1; . . . ; gn�0 is the label vector, � denotes
the element-wise product between two matrices, and
A ¼ faajaa � 0;aa01 ¼ 1g is the feasible set of aa.

In the weakly labeled learning scenario, we have a set of
pseudo-label vectors instead of a single pseudo-label vector
as in co-training. Let us denote the pseudo-label vector set
as C ¼ fymjm ¼ 1; . . . ;Mg, similar to [2], [22], we extend the
supervised learning problem in (5) to the weakly labeled
learning scenario as follows:

min
d�0;10d	1

max
aa2A
�aa0aa

2C
� 1

2
aa0

XM
m¼1

dmK� ymy
0
m

 !
aa; (6)

where d ¼ ½d1; . . . ; dM �0 is the combination coefficient vector.
In other words, when there are more than one pseudo-label
vectors, we optimize the classifier parameter aa and simulta-

neously find an optimal linear combination
PM

m dmymy
0
m to

approximate gg0, where g is the same ground truth label
vector as that in supervised learning.

The problem in (6) can be deemed as an ‘1-norm MKL
problem [24] with each base kernel as K� ymy

0
m. To sim-

plify notation, we define Qm ¼ K� ymy
0
m, which is referred

to as an input-output kernel as in [21]. The traditional MKL
problem [23], [24], [40], [41] aims to find an optimal linear
combination of input base kernels Km’s with a single
label vector. In contrast, we aim to learn the optimal linear
combination of input-output kernels in our weakly labeled
learning scenario in order to effectively integrate these
kernels that are decided by a set of pseudo-label vectors.
The problem in (6) can be solved by using existing solvers
such as [24].

5.2 Weakly Labeled Learning via Multi-Layer MKL

As shown in Section 4, the pseudo-label vectors on each
view are generated according to different views, biases, and
iterations. In Section 5.1, we formulate the weakly labeled
learning problem on each view as an ‘1-norm MKL prob-
lem, in which we ignore the different ways that the pseudo-
label vectors are generated. By putting the pseudo-label
vectors generated in the same way into a group, we can
organize the pseudo-label vectors into three dimensions in
terms of view, bias, and iteration.

To effectively utilize and capture such a group structure
when learning the classifier, we propose to use different
regularizers on the combination coefficients at different
layers, which leads to a multi-layer MKL problem. In this
section, we study a general multi-layer MKL problem and
also propose an efficient solution. Since our multi-view
weakly labeled learning problem has a three-layer structure,
we take the three-layer structure as an example (see Fig. 2)
to introduce the objective function and the solution of our
multi-layer MKL.

Considering the three-layer case, we have the pseudo-
label vector set as discussed in Section 4. For each view, we

will learn an MKL classifier by using the corresponding
ðV � 1Þ � S � t pseudo-label vectors. Let us denote the total
number of iterations at the current iteration as T , the total
number of the other views as J with J ¼ V � 1. We can
organize the pseudo-label vectors and uniformly refer to
the pseudo-label vector set for the tth iteration and the vth
view as C ¼ fyj;s;lg, where l ¼ 1; . . . ; T; s ¼ 1; . . . ; S; and

j ¼ 1; . . . ; J are the indices for the iteration, bias and view,
respectively. Correspondingly, the input-output kernel is
defined asQj;s;l ¼ K� ðyj;s;ly0j;s;lÞ.

Inspired by [21], we propose to exploit the inherent
group structure on the input-output kernels by enforcing a
multi-layer group regularization on the kernel combination
coefficients. We formulate our three-layer Multiple Kernel
Learning problem as follows:

min
D2D

max
aa
�aa0aa

2C
� 1

2
aa0Qaa; (7)

whereQ ¼PJ
j¼1
PS

s¼1
PT

l¼1 dj;s;lQj;s;l,D 2 RJ�S�T is a third-
order tensor with each element Dðj; s; lÞ ¼ dj;s;l, and
D ¼ fDjdj;s;l � 0;VðDÞ 	 1g with VðDÞ ¼ kDkp1;p2;p3 as the

‘p3;p2;p1 -norm on D defined as follows: VðDÞ ¼ kDkp1;p2;p3 ¼
ðPJ

j¼1ð
PS

s¼1ð
PT

l¼1ðdj;s;lÞp3Þ
p2
p3Þp1p2Þ 1p1 .

The ‘p3;p2;p1 -norm on D allows us to impose different
regularizers on different layers to cope with different prior
information. As shown in Fig. 2, each blue circle is an input-
output kernel Qj;s;l in our multi-view weakly labeled learn-

ing problem, and each rectangle in the third layer is the
combination coefficient dj;s;l. At the third layer, for any given

j; s, we impose the ‘p3 -norm on the coefficients fdj;s;ljTl¼1g that
share the same parent, i.e., ðPT

l¼1ðdj;s;lÞp3Þ1=p3 ¼ ej;s, where
ej;s is denoted by a green rectangle in Fig. 2. Similarly, at the
second layer, for any given j, we impose the ‘p2 -norm on

fej;sjSs¼1g that share the same parent, ðPS
s¼1ðej;sÞp2Þ1=p2 ¼ gj

with gj being denoted by red rectangles in Fig. 2. And we

impose the ‘p1 -norm on fgjjJj¼1g at the first layer. In our

work, the base input-output kernels in the first layer, second
layer and third layer are constructed by using the pseudo-
label vectors from different views, biases and iterations,
respectively. Other possible orders for the multi-layer

Fig. 2. Organization of the three-layer structure for the multi-layer MKL in
our co-labeling framework. The circles denote the input-output kernels,
and the rectangles with different colors denote the combination coeffi-
cients at different layers, respectively. We impose different regularizers
on the combination coefficients at each layer when combining them to
obtain their parent node (e.g., from the blue rectangles to the green
rectangles).
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structure can also be used, but we found that they achieve
similar results. Therefore we fix the order as in Fig. 2 in all
the experiments.

Different norms may introduce different levels of spar-
sity on the kernel combination coefficients [24]. For exam-
ple, if one uses ‘1-norm as in the traditional ‘1-norm MKL
(see Section 5.1), it usually leads to a sparse solution for
the kernel combination coefficients. Similarly, an ‘p-norm
(1 < p < 1Þ may lead to a denser solution, and the
‘1-norm will result in a uniform solution for the kernel
combination coefficients. Therefore, with different norm
parameters for different layers, our model can better cope
with the intrinsic structure in these input-output kernels,
making us learn a more robust classifier.

5.3 Solution to Multi-layer MKL

By defining ~’j;s;lð�Þ as the corresponding non-linear map-
ping function induced from the input-output kernel matrix

Qj;s;l (i.e., Qj;s;lði; ~iÞ ¼ ~’j;s;lðxiÞ0~’j;s;lðx~iÞ), we write the primal

form of (7) as follows:

min
~wj;s;l;D;r;�i

1

2

X
j;s;l

jj ~wj;s;ljj2
dj;s;l

þ C
Xn
i¼1

�2i

 !
� r;

s:t:
X
j;s;l

~w0j;s;l~’j;s;lðxiÞ � r� �i; 8i;

VðDÞ 	 1; dj;s;l � 0; 8j; s; l:

(8)

The derivation follows the Lagrangian multiplier method
used in [24] and thus it is omitted here. The formulation in
(8) is a convex optimization problem, therefore the global
optimum is guaranteed. To solve this problem, we alternat-
ingly optimize two subproblems with respect to the two sets
of variables f ~wj;s;l; r; �ig and fDg as in [23], [24], [42], but we
propose a new recursive updating strategy to solve fDg.

5.3.1 Updating SVM Variables with Fixed D

With a fixed D, we introduce the Lagrangian multipliers

aa ¼ ½a1; . . . ;an�0 and write the dual of (8) with respect to
other primal variables f ~wj;s;l; r; �ig as:

max
aa2A
�aa0aa

2C
� 1

2
aa0

X
j;s;l

dj;s;lQj;s;l

 !
aa; (9)

which is a standard quadratic programming (QP) problem
with A ¼ faajaa01 ¼ 1; 0 	 aag. Thus it can be efficiently
solved by any existing QP solvers. Then, the primal varia-
bles ~wj;s;l; r; �i can be recovered accordingly. Thus, the
squared ‘2-norm of ~wj;s;l can be obtained as:

jj ~wj;s;ljj2 ¼ ðdj;s;lÞ2aa0Qj;s;laa: (10)

5.3.2 UpdatingD with Fixed SVM Variables

With fixed SVM variables f ~wj;s;l; r; �ig, the problem for
updatingD is as follows:

min
D

1

2

XJ
j¼1

XS
s¼1

XT
l¼1

jj ~wj;s;ljj2
dj;s;l

s:t: kDkp1;p2;p3 	 1; dj;s;l � 0; 8j; s; l:
(11)

The most challenging problem in solving (11) comes
from the ‘p3;p2;p1 -norm constraint on D. We observe that
there is a multi-layer structure for our MKL problem (see
Fig. 2), namely, some of the nodes at the higher layers (e.g.,
the third layer) share the same parent at the lower layer
(e.g., the second layer). So we propose a new recursive
updating strategy, which can also be applied to multi-layer
MKL with more than three layers. We sketch the main idea
here, and also provide the detailed derivations and proof in
Appendix A, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2015.2476813.

Let us denote nj;s;l ¼ k ~wj;s;lk2 for simplicity, and define a

matrix E 2 RJ�S with Eðj; sÞ ¼ ej;s where ej;s is defined as in
Section 5.2 and Fig. 2. Then the regularizer in (11) can be
written as VðDÞ ¼ kEkp1;p2 . Correspondingly, the problem

in (11) can be reduced to a two-layer MKL as follows:

min
E

1

2

XJ
j¼1

XS
s¼1

�j;s

ej;s

s:t: kEkp1;p2 	 1; ej;s � 0; 8j; s;
(12)

where we have

�j;s ¼
XT
l¼1

n
p3

1þp3
j;s;l

 !1þp3
p3

: (13)

Similarly, let us define a vector gg ¼ ½g1; . . . ; gJ �0, where gj is
defined in Section 5.2 and Fig. 2. We further reduce the prob-

lem in (12) to a one-layer MKL as: minkggkp1	1;gg�0
1
2

PJ
j¼1

hj
gj
,

wherewe also have

hj ¼
XS
s¼1

�
p2

1þp2
j;s

 !1þp2
p2

: (14)

For the given hj’s, we can easily obtain gj by solving the
one-layer problem in closed form as in [24].

Therefore, to solve the multi-layer problem in (11), we
first calculate nj;s;l ¼ k ~wj;s;lk2 for the nodes in the third layer
by using (10). Then we use nj;s;l to calculate �j;s and hj for

the nodes in the second and first layers by using (13) and
(14), respectively. After reaching the first layer, we can cal-
culate gj in closed form by solving the one-layer MKL prob-

lem using [24], and then we recursively solve ej;s and dj;s;l
as described in the following proposition:

Proposition 1. Let us define a function Gða; b; pÞ ¼ a
b

� � 1
pþ1. Then

we obtain the optimal solution for the subproblem (11) as the
following analytical form:

dj;s;l ¼ Gðnj;s;l; �j;s; p3Þ ej;s; (15)

where ej;s ¼ Gð�j;s; hj; p2Þ gj; (16)

gj ¼ Gðhj; t; p1Þ; (17)

where nj;s;l ¼ k ~wj;s;lk2, �j;s and hj are calculated using (13)

and (14), respectively, and t ¼ ðPJ
j¼1 h

p1
1þp1
j Þ1þp1p1 .
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The optimization methods for learning the kernel combi-
nation coefficients in [24] and [42] are all based on the analy-
sis of the KKT conditions, but how to apply the method
directly to structures with more than two layers is unclear
as it is too complex to directly calculate the derivatives with
respect to the kernel combination coefficients. In contrast,
our solution is based on the new recursive updating strat-
egy from the introduction of the intermediate variables,
thus it can be easily used for three or more layer structures.
Moreover, the objective function in (8) for our multi-layer
MKL is jointly convex with respect to the kernel combina-
tion coefficients and the SVM primal variables, therefore
our algorithm enjoys similar convergence properties as
‘p-MKL [24].

5.4 Overall Optimization Procedure for Co-Labeling

The whole optimization procedure for our co-labeling algo-

rithm is listed in Algorithm 3. A total number of V classi-

fiers are trained from our co-labeling algorithm. The initial

pseudo-label vector set Cv1 for the vth view is problem

dependent. For example, in SSL and ROD we can use the
predictions from the classifiers trained on the labeled data

to generate the pseudo-label vectors as in Section 4, while

in MIL we initialize all instances in positive bags as posi-

tive and all instances in negative bags as negative. The

algorithm is composed of two main loops. In the outer

loop, we iteratively update Cv for each view by using Algo-

rithm 2, while in the inner loop we learn the classifiers by

using our proposed multi-layer MKL as discussed in Sec-
tion 5.3. After obtaining the final classifier for each view,

the final decision value is calculated by fusing the decision

values from all the V views.

Algorithm 3. Co-Labeling Algorithm

1: Initialize the pseudo-label vector set Cv1 for each view and
set t ¼ 1.

2: repeat
3: for v ¼ 1 : V do
4: ConstructQj;s;l using K and Cvt as in Section 5.2 and ini-

tializeDwith equal weights.
5: repeat
6: Obtain aa by solving the subproblem (9) using the

standard QP solver with D.
7: Calculate jj ~wj;s;ljj2 according to (10) and update D

by solving (11).
8: until The objective in (8) converges.
9: end for
10: Update the pseudo-label vector set Cvtþ1 using

Algorithm 2.
11: Set t tþ 1
12: until The objectives of all views converge.
13: return The classifiers ffvjVv¼1g and the final classifier is

obtained by fusing all the V classifiers.

Convergence: For each view, we solve an MKL problem
which minimizes the objective function in (8) with respect
to the SVM primal variables and D (see Algorithm 3). Note
we add the new pseudo-label vectors into the set Cv at each
iteration. So, in the worst case the optimal solution of MKL
at the current iteration should be the same one at the

previous iteration by setting the entries in the coefficient
vector D corresponding to the newly added pseudo-label
vectors to zeros. Therefore the objective values of our MKL
problem on each view in (8) should not increase as the num-
ber of iterations increases. According to our experiments,
our algorithm often stops within around 10 iterations.

Time complexity: The main cost in Algorithm 3 is from the
training process of multi-layer MKL. Let us denote the time
complexity for trainingMKL asOðMKLÞ. Then the total time
complexity of Algorithm 3 is T � V �OðMKLÞ, where V is the
total number of views and T is the number of iterations.

Note the time complexity for MKL training has not been
theoretically analyzed. Usually, the MKL solver needs to
train an SVM for a few iterations. The empirical analysis
shows the time complexity for optimizing the QP problem
in SVM is Oðn2:3Þ, where n is the number of training sam-

ples. Therefore, the complexity of MKL is Oð~tn2:3Þ, where ~t
is the number of iterations in MKL.

Generalization bound analysis:We also analyze the generali-
zation bound of our co-labeling algorithm in Appendix B,
available online. Specifically, we first give the generalization
bound of our weakly labeled learning method on each
view, and then present the generalization bound for the final
classifier.

6 EXPERIMENTS

In this section, we evaluate our co-labeling approach on five
real-world datasets for four cases: 1) Two-view Multiple
Instance Learning, 2) Two-view Semi-Supervised Learning,
3) Multi-view Semi-Supervised Learning and 4) Multi-view
Relative Outlier Detection. Note Well-SVM [7] can handle
different types of weakly labeled data in the single view set-
ting, we treat it as the most related baseline for comparison.
We also compare our co-labeling approach with the related
state-of-the-art methods for each learning task (see details
of those baseline methods in Sections 6.1, 6.2, and 6.3).

For our co-labeling approach with multi-layer MKL, dif-
ferent norm parameters for different layers can represent dif-
ferent prior information for the corresponding layer. First,
we iteratively update the label candidate sets. The labels
from different iterations may be quite different and only the
labels from a limited number of iterations are close to the
ground-truth labels. Thus we prefer a sparse regularizer for
the iterations, andwe use an ‘1-norm on the iteration layer so
that only the pseudo-label vectors from a few iterations
should be used for the final prediction. Second, in our co-
labeling algorithm, multiple bias terms are used to cope with
the prediction biases. Considering that the pseudo-label vec-
tors from different biases within a certain region should be
somewhat similar, we use an ‘2-norm on the biases, which
leads to a denser solution. So we can better utilize multiple
bias terms to enhance the robustness of the learnt classifier.
Third, as the labels from other views may contain comple-
mentary information, we thus expect that they are equally
important. Therefore, an ‘1-norm is utilized for the view
layer in our model. While it is possible to tune other values,
we finally utilize the ‘1;2;1-normMKL on each view.

To extensively evaluate our proposed method, we report
the results using ‘1-MKL as in our preliminary work [20]
as CoL(1-layer), and we also refer to our co-labeling
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algorithm with ‘1;2;2-norm MKL as CoL(2-layer), and the one
with ‘1;2;1-norm MKL as CoL(3-layer). As mentioned in Sec-
tion 5, in the two-view settings, the pseudo-label vector on
one view is constructed by using the predictions from only
one view (i.e., the other view), and there is only one node at
the first layer (see Fig. 2). As a result, our three-layer MKL
for solving the weakly labeled learning problem on each
view becomes a two layer-MKL, thus CoL(3-layer) reduces
to CoL(2-layer) in this case. So we only report CoL(1-layer)
and CoL(2-layer) for the two view settings.

6.1 Two-View Multiple Instance Learning

MIL has been successfully used for Text-Based Image
Retrieval (TBIR) [5], so we evaluate our co-labeling approach
for TBIR under the two-view setting. Similar to [5], we con-
duct the experiment on the large-scale NUS-WIDE data-
set [43], which consists of 269,648 images from 81 annotated
concepts collected from the website Flickr.com. Two types of
features are extracted,

� 1) The textual feature is extracted from the tags asso-
ciated with each image, in which the vocabulary is
constructed by using the top 1,000 words with the
highest frequency. Then, a 1,000 dimensional term-
frequency feature is extracted for each image.

� 2) The DeCAF6 feature is extracted by using the out-
put from the sixth layer of the CNNmodel in [44].

We treat each type of feature as one view, and use the
Gaussian kernel for each view with the bandwidth parame-
ter as the mean of squared distances between all training
samples.

We compare our co-labeling approach with WellSVM
and other state-of-the-art MIL methods, MIL-CPB [5], mi-
SVM [3] and sMIL [4], which have achieved the best per-
formances on the NUS-WIDE dataset as reported in [5].
Since those works are single-view methods, we use the late
fusion strategy to average the decision values from the clas-
sifiers on different views. We also employ the early fusion
strategy for these methods by using the average kernel,
which are worse than or only comparable to the results
using the late fusion strategy.

For all methods, we construct 15; 20, and 25 positive bags
using the top-ranked relevant images and the same number
of negative bags using randomly selected irrelevant images,
in which each bag contains 15 instances. For performance
evaluation, the non-interpolated Average Precision (AP) is
used as the performance metric. Mean Average Precision

(MAP) is the mean of the APs over all the concepts/classes.
A binary classifier is trained for each concept, and the top-
100 MAPs are reported in the experiments as in [5].

The MAPs over 81 concepts for different methods on
the NUS-WIDE dataset are reported in Table 1. The mi-
SVM method outperforms other baseline methods MIL-
CPB, sMIL, and WellSVM, which indicates the simple
approach works well on this dataset by iteratively train-
ing the SVM classifier and inferring the labels of training
instances. We also observe that the results of all methods
become higher, when the number of positive/negative
training bags increases. Our co-labeling approaches con-
sistently outperform the existing MIL methods when
using different number of positive/negative training
bags, which clearly demonstrates the effectiveness of our
methods for combining information from two views.
Moreover, CoL(2-layer) is better than CoL(1-layer),
which indicates it is beneficial to employ group structure
information among the base input-output kernels associ-
ated with the pseudo-label vectors.

6.2 Semi-Supervised Learning

For SSL, we compare our proposed co-labeling approach
with WellSVM [7] as well as the following state-of-the-art
baselines:

� SVM, the standard SVM trained with the labeled
training data, which is a commonly used baseline in
semi-supervised learning;

� Co-Training [8], the original Co-Training algorithm;
� Co-LapSVM [11], the Laplacian SVM method for the

multi-view setting,1 in which the Laplacian matrices
from all views are averaged to obtain a common
Laplacian matrix for each view;

� TSVM [45], the transductive SVM2 method trained
with the labeled and unlabeled data for each view;

� PMC [46], an improved version of co-training3 which
is designed to automatically split the single feature
vector into two views for sample selection, and
finally it only outputs one classifier for prediction.
We apply PMC on the concatenated feature vector
from all the views.

For all the methods except PMC, the classifiers from all
views are fused with equal weights to obtain the final pre-
diction in the late fusion fashion, unless stated otherwise.

TABLE 1
Mean Average Precisions over 81 Concepts from Different

Methods on the NUS-WIDE Dataset

#bag = 15 #bag = 20 #bag = 25

MIL-CPB 72.24 73.00 73.22
mi-SVM 79.68 79.96 80.11
sMIL 73.24 74.16 74.80
WellSVM 74.91 75.49 76.12
CoL(1-layer) 80.62 80.95 81.64
CoL(2-layer) 81.15 81.33 82.03

#bag denotes the number of positive/negative training bags.

TABLE 2
Summarization of the Datasets Used in Two-View SSL

Datasets d1 d2 #c #l #u #t

BBC 4,817 4,818 5 10 1,104 1,111
BBCSport 2,306 2,307 5 10 360 367

d1 and d2 are the feature dimensions of two views. #c, #l, #u and #t are the
numbers of classes, labeled training data, unlabeled training data and test
data, respectively.

1. Code available at: http://manifold.cs.uchicago.edu/
manifold regularization/software.html

2. Code available at: http://mloss.org/software/view/19/
3. Code available at: www.cse.wustl.edu/
mchen/code/pmc.tar
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6.2.1 Two-View SSL

We evaluate our co-labeling approach for two-view semi-
supervised learning for news classification on the BBC and
BBCSport datasets [47]. The details of these two datasets are
summarized in Table 2 and described in the following.

The two datasets contain news articles collected from the
BBC.4 The BBC dataset contains 2,225 documents from five
topics (business, entertainment, politics, sports and technol-
ogy) and the BBCSport dataset consists of 737 sports news
documents from five classes (athletics, cricket, football,
rugby and tennis), respectively. Following [14], we ran-
domly partition each original feature into two views, and
each view is normalized such that its ‘1-norm is equal to
one. For each view, we use the linear kernel for all the meth-
ods. We partition the datasets into the training set and the
test set, each of which contains 50 percent of the documents
per class. Two labeled samples from each class are further
selected from the training set, and all the remaining data in
the training set are utilized as unlabeled data for the train-
ing process. We perform the experiments ten times based
on different data partitions, and report the MAPs (mean-
s�standard deviations) in Table 3.

From the results, we have the following observations in
terms of the means of MAPs. Our co-labeling methods out-
perform the existing SSL methods for each single view and
for the joint view, which demonstrates the effectiveness of
our co-labeling approach for two-view semi-supervised
learning. Moreover, we also observe that CoL(2-layer) out-
performs CoL(1-layer), which again demonstrates the effec-
tiveness of our proposed multi-layer MKL for utilizing the
group structure among the base kernels associated with the
pseudo-label vectors.

We also conduct the experiments for the single-view
learning methods SVM, TSVM and WellSVM by using
the original features. The results for SVM, TSVM and
WellSVM are 76:85� 3:61, 75:72� 3:16, and 90:91� 3:36
(resp., 80:80� 3:61, 79:21� 6:43, and 84:82� 7:28) on the BBC
(resp., BBCSport) dataset. It is interesting that SVM and
WellSVMachieve better results by using the early fusion strat-
egywith the original features on both datasets, which demon-
strates the two methods can benefit from accessing all the
features in the learning process for this application. However,
those results are still worse than our co-labelingmethods.

6.2.2 Multi-View SSL

We also evaluate our co-labeling approach for multi-view
semi-supervised learning on the Reuters multilingual data-
set [48], which is from the Reuters RCV1 and RCV2 collec-
tions. The task is to classify the documents written in five
languages, English, French, German, Italian and Spanish into
different categories. Following [48], a total number of 6 clas-
ses (e.g., C15 (Performance), CCAT (Corporate/Industrial), E21
(Government Finance), ECAT (Economics), GCAT (Government
Social), M11 (Equity Markets)) are utilized for performance
evaluation. The documents belonging to more than one
class are annotated using the label of their smallest class.
Each document from the corresponding corpus has been
translated to the other four languages by using the statistical
machine translation system PORTAGE. Detailed informa-
tion of this dataset is shown in Table 4.

In order to perform the multi-view learning task, we uni-
formly divide the feature vector of the original language
and the four corresponding translated languages into three
parts. For each view, we use the linear kernel for all the
methods. In this way, we can obtain a total number of 15
views for the learning problem. For each class of each lan-
guage, a total number of 14 documents are selected as the
labeled training data, thus a total number of 84 documents
are used as the labeled training data for each language.
Moreover, another 2,916 samples are utilized as the unla-
beled data. So a total number of 3,000 documents are used
to train the classifiers. For each class of each language, the
binary one-versus-others classifiers are trained for perfor-
mance evaluation, and the experiments are repeated five
times with different data partitions. The numbers of train-
ing and testing samples are also summarized in Table 4.

TABLE 3
MAPs (Means � Standard Deviations (%)) over Five Classes for Different Methods on the BBC and BBCSport Datasets

BBC BBCSport

View1 View2 View1+View2 View1 View2 View1+View2

SVM 68.37 � 3.80 65.76 � 3.91 76.46 � 3.45 73.90 � 3.22 68.90 � 2.62 80.65 � 3.38
TSVM 71.99 � 5.48 66.83 � 3.54 76.33 � 4.06 74.62 � 5.73 65.51 � 3.36 78.22 � 3.05
WellSVM 80.41 � 5.57 74.95 � 3.16 85.24 � 3.24 75.57 � 6.37 72.67 � 5.79 81.29 � 5.21
Co-LapSVM 77.44 � 3.36 75.44 � 4.82 84.09 � 3.56 74.57 � 3.50 70.84 � 2.46 81.70 � 3.63
Co-Training 88.47 � 7.79 84.44 � 8.05 88.62 � 8.04 89.25 � 4.38 85.60 � 4.06 90.31 � 4.89
PMC — — 89.64 � 5.16 — — 88.44 � 4.38
CoL(1-layer) 92.77 � 4.19 91.60 � 3.10 94.77 � 3.69 91.87 � 2.20 90.83 � 1.56 94.81 � 1.41
CoL(2-layer) 93.88 � 3.36 93.02 � 2.74 95.65 � 3.12 92.51 � 2.63 91.91 � 1.32 95.44 � 1.63

Results in boldface are significantly better than the others, judged by the t-test with a significance level at 0.05.

TABLE 4
Summarization of the Reuters Multilingual Dataset

Used in Multi-View SSL

Language #dim #docs #c #l #u #t

English 21,531 18,758 6 84 2,916 18,674
French 24,893 26,648 6 84 2,916 26,564
Spanish 11,547 12,342 6 84 2,916 12,258
German 34,279 29,953 6 84 2,916 29,869
Italian 15,506 24,039 6 84 2,916 23,955

#dim is the dimension of the document, while #docs, #c, #l, #u and #t are the
numbers of documents, classes, labeled training instances, unlabeled training
instances and test instances, respectively.4. Features available at: http://mlg.ucd.ie/datasets/bbc.html
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The means and the standard deviations of MAPs over six
classes and all five languages for different methods on the
multilingual dataset are reported in Table 5. We have the
following observations in terms of the means of MAPs over
six classes and all five languages:

� Our co-labeling approaches CoL(2-layer) and CoL(3-
layer) after considering the group structure outper-
forms the existing semi-supervised learningmethods,
which demonstrates the effectiveness of the proposed
methods.

� On the multi-view SSL setting, we also observe that
CoL(2-layer), which partially employs the group
structure, outperforms CoL(1-layer). By fully consid-
ering the group structure on all the three layers, CoL
(3-layer) achieves the best results. These results again
demonstrate that it is beneficial to employ different
regularizers at different layers to capture the inherent
group structure among the base input-output kernels.

We also conduct the experiments for the single view
learning methods by concatenating the features from all
views. The results for SVM, TSVM, and WellSVM are
66:62� 0:96, 66:63� 0:98, and 67:83� 0:99, respectively.
Those results are still worse than our co-labeling approaches.

6.3 Multi-View Relative Outlier Detection

The 20 Newsgroups Data Set5 contains 18,774 news docu-
ments from 20 subcategories, in which 11,269 news docu-
ments are used as the training set, and the remaining 7,505
news documents are used as the test set. Each news docu-
ment is represented using the word-frequency feature and
its feature dimension is 61;188. If we regard the news docu-
ments from some groups as the normal patterns, and the
news documents from other groups as outliers, the news
document classification problem can be treated as an outlier
detection task. By additionally using a set of labeled normal
news documents in the training set, we can further formulate
this problem as a relative outlier detection problem.

In our experiments, we treat the samples from the first 10
subcategories as the normal documents, and the samples
from the remaining 10 subcategories as the outliers. We

then construct the labeled reference set by using N normal
training documents, and use another N normal training
documents as unlabeled data. Also, another N=9 outlier
documents in the training set are used as unlabeled training
data, such that the outlier ratio for unlabeled training data is
1=10. In our experiments, we set N ¼ 400; 1;200, and 2;000,
respectively. The test data set is used to evaluate all the algo-
rithms, and the mean of APs over 10 rounds of experiments
is reported for performance evaluation. In order to perform
the multi-view learning task, we also uniformly divide the
feature vector of each news document into three parts. In
this way, we can obtain a total number of three views for the
learning algorithms, and the linear kernel is used for each
view in ourmethod.

While the ROD task is not discussed in [7], we can still
applyWellSVM to this task, which is referred to asWellSVM-
ROD here. We also compare our work with the state-of-the-
art ROD methods MLOD [36] and LSOD [37] for the ROD
task. The parameters of MLOD and LSOD are set by using
their leave-one-out cross validation strategies [36], [37].

From the results shown in Table 6, we have the following
observations. First, our co-labeling approach CoL(3-layer)
again achieves the best performances for multi-view relative
outlier detection when using different number of normal
news documents. Second, our CoL(3-layer) outperforms
CoL(2-layer) and CoL(1-layer).

7 CONCLUSIONS

To effectively utilize different types of multi-view weakly
labeled data, in this paper we have studied a new problem
called multi-view weakly labeled learning, which covers
various weakly labeled learning problems including SSL,
MIL and ROD under the multi-view setting. We firstly
propose a co-labeling framework to solve the multi-view
weakly labeled learning problem using pseudo-label vec-
tors. For each view, we propose a novel multi-layer MKL
formulation to train a more robust classifier based on a set
of input-output kernels associated with the pseudo-label
vectors generated from different iterations, biases and
views. Extensive experimental results for MIL, SSL and
ROD on the real-world multi-view datasets demonstrate
that our proposed approach achieves state-of-the-art results.

TABLE 5
MAPs (Means � Standard Deviations (%)) over Six Classes and All Five Languages from Different Methods

on the Reuters Multilingual Dataset

SVM TSVM WellSVM Co-LapSVM Co-Training PMC CoL(1-layer) CoL(2-layer) CoL(3-layer)

MAP 66.79 � 1.11 69.34 � 1.22 50.02 � 0.92 69.34 � 0.82 42.00 � 2.36 67.20 � 0.76 69.33 � 1.71 71.73 � 1.25 72.45 � 1.12

Results in boldface are significantly better than the others, judged by the t-test with a significance level at 0.05.

TABLE 6
APs (Means � Standard Deviations (%)) from Different Methods on the 20 Newsgroups Data Set When Using Different

Number of Normal Training Documents (i.e., N )

N WellSVM-ROD LSOD MLOD CoL(1-layer) CoL(2-layer) CoL(3-layer)

400 45.35 � 0.78 42.41 � 0.21 44.45 � 0.93 45.80 � 1.31 46.79 � 1.23 47.30 � 1.38
1,200 45.08 � 1.24 42.29 � 0.17 44.83 � 0.27 46.82 � 0.91 47.26 � 1.24 47.65 � 1.51
2,000 47.33 � 4.36 42.29 � 0.23 44.74 � 0.22 47.90 � 2.06 49.90 � 2.07 50.47 � 1.94

Results in boldface are significantly better than the others, judged by the t-test with a significance level at 0.05.

5. Data available at: http://qwone.com/
jason/20Newsgroups/
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